
Warteschlangen-

simulator
An open-source tool for modelling, simulation

and animation of queueing processes

Alexander Herzog
TU Clausthal / SWZ

www.warteschlangensimulation.de



The graphical user-interface



Overview

 Simulation and animation of queueing processes.

 Queueing processes are modeled in form of flow charts.

 No hard-coded model that can only be parameterized,

but complete freedom in creating models

(with on the other side no need to write program code).

 Full and automatic statistics recording during simulation.

In program statistics viewer and report generator available.

 Automation (parameter studies, optimizations) available.

 Can be used as a desktop program with full graphical user-interface or in 

command-line mode (for example as part of a tool chain on a server).



License & download

 Warteschlangensimulator is Apache 2.0 licensed open-source which allows 

private as well as commercial usage.

 Hosted on GitHub.

 Binaries and source code available for download:

https://github.com/A-Herzog/Warteschlangensimulator

Source: https://choosealicense.com/licenses/apache-2.0/



Technical data

 Written in Java, i.e. platform independent (Windows, Linux).

Only a Java runtime in version 11 or higher is needed.

 Comes with full graphical user-interface but can also be controlled via 

command-line (for example model creation on a slow Windows desktop

computer and than simulation of the model on a fast, remote Linux compute 

server).

 Windows version comes with full installer, uninstaller, auto updater etc.

 Portable version is also available.



Main features (1)

Model editor

 Working similar to vector drawing programs.

 Allows a fast overview of the model.

 But models can also be partially or completely generated by external 

programs for automation due to the open and documented xml file format for 

models.

Simulation

 High speed multi-core simulation.

 Automatic recording of all statistics indicators (no need to a priori define 

which indicators are of interest).



Main features (2)

Animation

 For easy understanding of model correlations – and because it’s fun.

 Animation can be recorded as videos.

 Option to display live indicators in form of values, diagrams etc. directly on 

the model surface during animation.

Statistics

 Automatic recording of all statistics indicators during simulation.

 Presentation of the results as texts, tables and graphics.

 Option to directly copy the results to external programs like spreadsheet 

processors.

 Report generation and free assembly of results also available.



Main features (3)

Parameter studies

 Easy creating of what-if studies.

 Results of multiple simulation runs can be combined directly in the user-

interface – or of course exported.

 Parameter study setups can be stored and then executed on a faster remote 

computer.

Optimization

 Optimizer for finding best input parameter setups to maximize or minimize 

some performance indicators.

 Different optimization strategies including genetic algorithms available.



More than 100 station types available



File formats (1)

 Native file format for models and statistics data: xml (dtd and xsd 

documentation available).

 Can read/write models and statistics also as zip, tar, tar.gz and json.

 Input and output of table data: xlsx, ods, csv, txt, via DDE from/to Excel, via 

database connectors.

 Output of statistics data: xlsx, ods, csv, txt, docx, odt, pdf, tex, typ, html, md.

 Exporting models: different bitmap formats, svg, eps, pptx, html, drawio.



File formats (2)

Models
(xml, zip, tar, json)

Model
editor

Simulator
core

Parameter 
studies / 

Optimizer / 
Script runner

Command-line interface

Statistics
viewer Statistics

(xml, zip, tar, json)

Reports
(xlsx, ods, csv, docx, 

odt, rtf, pdf, tex, 
html, md)

Flow chart based
graphical editor
and animation 

viewer

Texts, tables, charts
viewer in program

Optional external 
input data

(xlsx, ods, csv, txt, DDE, 
database)

Optional external 
output data

(xlsx, ods, csv, txt, DDE, 
database)

Also available when no graphical output is available (remote console)

Configurable via
graphical user 
interface or via 
command-line

Model
images

(png, jpeg, gif, bmp, 
svg, eps, drawio)

Recorded 
animations

(avi)

User-defined 
statistics filters / 

user-defined 
reports



Scripting

 Complex branching or holding clients

rules can be defined by scripts.

 This gives the simulator strong modelling

capabilities.

 Scripts can be written using

Javascript or Java.

 Java code can use external class files.

 Syntax highlighting and code competition is

available in the built-in editor.

 Java code is compiled at simulation start and therefore can be executed with 

native system speed.

 Scripts can also be used for filtering statistics data.



Server mode

 Of source slow and fast computers can be combined by transferring model files 

created on the slow desktop computer to the fast remote server and there 

executed via command-line interface.

 But Warteschlangensimulator also has three built-in servers for simplifying this:

 When starting the built-in web server Warteschlangensimulator will accept model 

files via a web interface and offer the statistics results of the finished simulations for 

download. The web server also offers a REST interface.

 The built-in simulation server allows to directly connect two instances of 

Warteschlangensimulator. The desktop instance (where the user-interface runs on) 

will transparently use the calculation power of the remote server when starting a 

simulation.

 The Warteschlangensimulator simulation server can also register as a MQTT client at 

a MQTT server to get simulation tasks via MQTT.

 Server modes can be started directly (via GUI or command-line) but scripts for 

making Warteschlangensimulator Docker images are also available.



Database connection

 Client arrivals and variable values can be read from database tables.

 Variable values and also any calculation results can be written to database 

tables during simulation.

 Directly supported database formats: SQLite (direct file access), HSQLDB 

(direct file access and via network connection), PostgreSQL (via network 

connection), MariaDB (via network connection), Firebird (via network 

connection), Access (direct file access), H2 database (direct file access and 

via network connection).

 More databases can be accessed via JDBC: Only a driver jar file and a record 

in the configuration file are needed.



Performance

 Typical runtimes for models with 1.000.000 – 10.000.000 simulated arrivals:

5 – 30 seconds.

 This allows a very interactive analysis of the models (no need to wait for 

hours for the results of a simulation).

 Multiple CPU cores will automatically be utilized when ever possible.

 Warteschlangensimulator is 10x – 100x faster than the most common 

commercial event-driven simulation tools.



Support

 Online help (English and German) available in the program.

 Textbook (in German language) available.

 Optionally an instant help can be displayed next to the program window on 

selecting stations.

 Interactive step-by-step tutorial and pdf tutorial available.

 Many example models loadable from the file menu.

 Pdf documentation (short introduction, reference of all station types, 

reference of all calculation and scripting commands, reference of all 

supported probability distributions, reference of all command-line parameters 

and hotkey reference) available.

 Wiki on GitHub homepage.

 Introduction videos available on GitHub homepage.

 Source code is 100% JavaDoc documented.



Usage example:

Impatient customers (1)

 On high operator utilization (= long queues), some customers will cancel waiting.

 A part of these cancelers will start another attempt later (and thus further 

increase the total load of the system).

Screenshot from model 

editor, therefore no 

values here yet.



Usage example:

Impatient customers (2)

Screenshot of a running animation:

Clients starting

a new attempt soon

Clients waiting and 

in service process



Usage example:

Impatient customers (3)

0

20

40

60

80

100

120

140

160

180

200

40%

50%

60%

70%

80%

90%

100%

110%

120%

30 35 40 45 50 55 60 65 70 75 80

A
v
e
ra

g
e
 w

a
it

in
g
 t

im
e
 (

in
 s

e
c
o
n
d
s)

S
u
c
c
e
ss

 r
a
te

 a
n
d
 o

p
e
ra

to
r 

u
ti

li
za

ti
o
n

Average Inter-arrival time (in seconds)

Effect of waiting cancelations

Success rate Utilization of the operators Utilization (calculated at system input) Average waiting time



Usage example:

Push/pull production

 By reducing the number of workpieces at the individual stations, it is possible 

to reduce the inventory in circulation and thus the residence times.

 At the same time, the variation in the residence times is reduced (= better 

delivery reliability).

 However, a too strong reduction of the maximum stock level leads to the fact 

that the available service capacity can no longer be fully utilized.



Usage example:

Assignment strategies

 In many cases the arriving customers are distributed to several process 

stations (several cash registers, several servers behind a load balancer, 

several partial call centers in a complex system, several parallel machines on 

a production line, ...).

 If the distribution of the customers has to take place as soon as they arrive, 

the effect can occur that customers will wait in one queue while another 

operator is in idle mode.

 Simulation can be used to investigate how strong

these effects are and whether it is worth

changing the overall system (for example to a

common queue) to remedy this.



More typical research questions (1)

 Queuing networks

Changes in one place can have effects in very different other places.

 Different customer types

If different types of customers or products are treated in the same system, 

they influence each other. Different prioritization allows virtually different 

service levels to be generated for different customers and still make optimal 

use of the available service.

 Batch arrivals and batch service

If the customers do not arrive individually or if the service is provided in 

groups, additional waiting times will occur.



More typical research questions (2)

 Transports

Components are often transported between process stations via conveyors or 

vehicles. These do not only have a limited capacity, but must also be in the 

right place at the right time.

 Combination of partial components

If components (e.g. car body and engine) have to be brought together at one 

station, the slower line blocks the faster one.

 Shift plans / failures

Often operators are not available continuously. Conversely, the operating 

performance can possibly also be actively adapted to the respective arrival 

rate.



Warteschlangensimulator

 Easy to use

 Fast

 Platform independent

 Open-source

github.com/A-Herzog/Warteschlangensimulator


	Folie 1: Warteschlangen-simulator
	Folie 2: The graphical user-interface
	Folie 3: Overview
	Folie 4: License & download
	Folie 5: Technical data
	Folie 6: Main features (1)
	Folie 7: Main features (2)
	Folie 8: Main features (3)
	Folie 9: More than 100 station types available
	Folie 10: File formats (1)
	Folie 11: File formats (2)
	Folie 12: Scripting
	Folie 13: Server mode
	Folie 14: Database connection
	Folie 15: Performance
	Folie 16: Support
	Folie 17: Usage example: Impatient customers (1)
	Folie 18: Usage example: Impatient customers (2)
	Folie 19: Usage example: Impatient customers (3)
	Folie 20: Usage example: Push/pull production
	Folie 21: Usage example: Assignment strategies
	Folie 22: More typical research questions (1)
	Folie 23: More typical research questions (2)
	Folie 24: Warteschlangensimulator

