
Calculation and scripting
command reference
for Warteschlangensimulator

Alexander Herzog (alexander.herzog@tu-clausthal.de)

This reference refers to version 5.8.0 of Warteschlangensimulator.
Download address: https://a-herzog.github.io/Warteschlangensimulator/.

mailto:alexander.herzog@tu-clausthal.de
https://a-herzog.github.io/Warteschlangensimulator/

Contents

1 Calculation commands and scripting in Warteschlangensimulator 1
1.1 Create expressions . 1

I Calculation commands reference

2 Constants . 5

3 Variables . 7

4 Basic arithmetic operations . 9

5 Trailing instructions . 11

6 General functions . 13
6.1 Random numbers . 14

7 Trigonometric functions . 15
7.1 Elementary trigonometric functions . 15
7.2 Hyperbolic trigonometric functions . 15
7.3 Inverse of the elementary trigonometric functions . 15
7.4 Inverse of the hyperbolic trigonometric functions . 15

8 Functions with multiple parameters . 17

9 Logic functions . 19

10 Probability distributions . 21
10.1 Geometric distribution . 21
10.2 Hypergeometric distribution Hg(N, K, n) . 21
10.3 Binomial distribution B(n, p) . 21

ii

Contents iii

10.4 Binomial distribution with mean a and standard deviation b . 21
10.5 Poisson distribution P (l) . 21
10.6 Zeta distribution Z(s) . 22
10.7 Negative hypergeometric distribution NHg(N, K, n) . 22
10.8 Negative binomial distribution NB(r, p) . 22
10.9 Negative binomial distribution with mean a and standard deviation b 22
10.10Discrete uniform distribution in the interval [a; b] (integer numbers) 22
10.11Logarithmic distribution. 22
10.12Borel distribution . 22
10.13Exponential distribution with mean a . 22
10.14Uniform distribution in the interval [a; b] . 23
10.15Normal distribution with mean a and standard deviation b . 23
10.16Log-normal distribution with mean a and standard deviation b . 23
10.17Gamma distribution with parameters α = a and β = b . 23
10.18Gamma distribution with mean a and standard deviation b . 23
10.19Erlang distribution with parameters n and λ = l . 24
10.20Beta distribution in the interval [a; b] and with parameters α = c and β = d 24
10.21Beta distribution in the interval [a; b] and with mean c and standard deviation d 24
10.22Weibull distribution with parameters Scale=a and Form=b . 24
10.23Cauchy distribution with mean a and Scale=b . 24
10.24Chi2 distribution with n degrees of freedom . 25
10.25Chi distribution with n degrees of freedom . 25
10.26F distribution with a degrees of freedom for the numerator and b degrees of freedom for

the denominator . 25
10.27Johnson SU distribution with parameters γ = a, ξ = b, δ = c and λ = d 25
10.28Triangular distribution over [a; c] with most likely value b . 25
10.29Trapezoid distribution over [a; d] with uniform distribution in [b; c] . 26
10.30Pert distribution over [a; c] with most likely value b . 26
10.31Laplace distribution with mean mu and scale factor b . 26
10.32Pareto distribution with scale parameter xmin = xmin and shape parameter α = a 26
10.33Logistic distribution with mean µ = mu and scale parameter s . 26
10.34Inverse gaussian distribution with λ = l and mean mu . 26
10.35Rayleigh distribution with mean mu . 27
10.36Log-Logistic distribution with α and mean β . 27
10.37Power distribution on [a; b] with exponent c . 27
10.38Gumbel distribution with location a and scale b . 27
10.39Gumbel distribution with expected value a and standard deviation b 27

iv Contents

10.40Fatigue life distribution with location parameter µ, scale parameter β and form
parameter γ . 28

10.41Frechet distribution with location parameter δ, scale parameter β and form parameter α 28
10.42Hyperbolic secant distribution with mean a and standard deviation b 28
10.43Left sawtooth distribution over [a; b] . 28
10.44Left sawtooth distribution with mean a and standard deviation b . 28
10.45Right sawtooth distribution over [a; b] . 29
10.46Right sawtooth distribution with mean a and standard deviation b . 29
10.47Levy distribution with location parameter µ and form parameter c . 29
10.48Maxwell Boltzmann distribution with parameter a . 29
10.49Student t-distribution with parameters µ and ν . 29
10.50Half normal distribution with start s and unshifted mean µ . 29
10.51U-quadratic distribution in the interval [a; b] . 30
10.52Reciprocal distribution in the interval [a; b] . 30
10.53Kumaraswamy distribution with parameters a und b over the interval [c; d] 30
10.54Irwin-Hall distribution with parameter n . 30
10.55Irwin-Hall distribution with mean a . 30
10.56Sine distribution in the interval [a; b] . 30
10.57Arcsine distribution in the interval [a; b] . 31
10.58Wigner half-circle distribution with mean m and radius R . 31
10.59Log-Cauchy distribution with parameters mu and sigma . 31
10.60Distribution based on empirical values . 31

11 Erlang C calculator . 33
11.1 Random selection of one of several values . 33
11.2 Random numbers according to a user-defined distribution . 34

12 Allen-Cunneen approximation formula . 35

13 Accessing model properties . 37
13.1 General simulation data . 37
13.2 Clients in the system. 38

13.2.1 Number of clients in the system . 38
13.2.2 Number of waiting clients in the system . 38
13.2.3 Number of clients in service process in the system . 39

13.3 Clients at the stations . 40
13.3.1 Number of clients at a station . 40
13.3.2 Number of clients at the queue at a station . 41

Contents v

13.3.3 Number of clients in service process at a station . 42
13.3.4 Number of arrivals and departures at a station . 43

13.4 Clients in system by client type . 43
13.4.1 Number of clients in the system by client type . 43
13.4.2 Number of waiting clients in the system by client type . 44
13.4.3 Number of clients in service process by client type . 45

13.5 Counter and throughput . 46
13.6 Waiting times . 47

13.6.1 Waiting times at a station . 47
13.6.2 Waiting times over all client types . 48
13.6.3 Waiting times for a specific client type . 48

13.7 Transfer times . 49
13.7.1 Transfer times at a station . 49
13.7.2 Transfer times over all client types . 50
13.7.3 Transfer times for a specific client type . 51

13.8 Process times . 52
13.8.1 Process times at a station . 52
13.8.2 Process times over all client types . 52
13.8.3 Process times for a specific client type . 53

13.9 Residence times . 54
13.9.1 Residence times at a station . 54
13.9.2 Residence times over all client types . 55
13.9.3 Residence times for a specific client type . 55
13.9.4 Setup times at a station . 56

13.10Flow factor . 57
13.10.1Flow factor at a station . 57
13.10.2Flow factor over all client types . 57
13.10.3Flow factor for a specific client type . 57

13.11Utilization of the resources . 57
13.11.1Utilization of a resource . 57
13.11.2Utilization of all resource together . 58

13.12Utilization of the transporters . 59
13.12.1Utilization of a transporter group . 59
13.12.2Utilization of all transporters together . 60

13.13Accessing the Statistics stations records . 60
13.14Accessing analog values . 61
13.15Accessing the client object specific data fields . 61

vi Contents

13.16Accessing the costs . 62

14 Comparison . 65
14.1 Comparison function . 65

II Javascript commands reference

15 Statistics object . 69
15.1 Definition of the output format . 69
15.2 Accessing statistics xml data . 69
15.3 Saving the statistics data to files . 71
15.4 Accessing station data . 71

16 System object . 73

17 Simulation object . 75
17.1 Base functions . 75
17.2 Accessing client-specific data . 76
17.3 Temporary batches . 78
17.4 Accessing parameters of the simulation model . 79
17.5 Accessing the current input value . 79
17.6 Number of operators in a resource . 80
17.7 Last client type at process station . 80
17.8 Fire signal . 80
17.9 Trigger script execution . 80
17.10Output message in logging . 80
17.11Release clients at delay stations . 81
17.12Clients in the queue of a process station . 81

18 Clients object . 83

19 Output object . 85

20 FileOutput object . 87

21 Model object . 89
21.1 Accessing station data . 90
21.2 Retrieve the associated statistics file . 90

22 XML selection commands . 91

Contents vii

III Java commands reference

23 StatisticsInterface accessible via sim.getStatistics() . 95
23.1 Definition of the output format . 95
23.2 Accessing statistics xml data . 95
23.3 Saving the statistics data to files . 97
23.4 Accessing station data . 97
23.5 Retrieve the associated statistics file . 97

24 RuntimeInterface accessible via sim.getRuntime() . 99

25 SystemInterface accessible via sim.getSystem() . 101
25.1 Base functions . 101
25.2 Accessing parameters of the simulation model . 101
25.3 Number of operators in a resource . 102
25.4 Last client type at process station . 103
25.5 Fire signal . 103
25.6 Trigger script execution . 103
25.7 Run external code . 103
25.8 Output message in logging . 103
25.9 Release clients at delay stations . 103
25.10Clients in the queue of a process station . 104

26 ClientInterface accessible via sim.getClient() . 105
26.1 Temporary batches . 107

27 InputValueInterface accessible via sim.getInputValue() . 109

28 ClientsInterface accessible via sim.getClients() . 111

29 OutputInterface accessible via sim.getOutput() . 113

30 FileOutputInterface accessible via sim.getFileOutput() . 115

31 ModelInterface accessible via sim.getModel() . 117
31.1 Accessing station data . 118

32 XML selection commands . 119

Chapter 1

Calculation commands and scripting in
Warteschlangensimulator

Calculation commands can be used in the simulator e.g. to determine time periods (such as processing
times) or to specify in which branching direction a client should be directed.
Scripts can be used both for the determination of branch directions and for the evaluation of simulation
results and for running of parameter series. The Warteschlangensimulator uses Javascript and Java as
languages.

1.1 Create expressions

To the right of all input fields into which calculations commands can be entered always the following
button is displayed: By using this button the Edit expression dialog (see figure 1.1) can be accessed.
The dialog contains a complete list of all the commands available in the current context, and makes it
easy to put together more complex commands and expressions.

1

2 1 Calculation commands and scripting in Warteschlangensimulator

Fig. 1.1: Edit expression dialog

Part I

Calculation commands reference
When using calculation commands in Warteschlangensimulator, it is distinguished between expressions
and comparisons. Expressions are used to calculate a numerical values, which are e.g. used as periods
of time. Comparisons provide a yes/no decision (for example, whether a client should be directed in a
particular direction). Unlike expressions, comparisons always contain at least one comparison operator.
All commands presented below are each recognized in any case. There is no distinction between different
case types.

Chapter 2

Constants

The following constants are available in all calculation commands:

• "e": Returns the basis of the exponential function ex. It is e ≈ 2.71828182845905.
• "pi": Returns the value of the circle constant π. It is π ≈ 3.14159265358979.
• "tau": Returns the unit circle diameter τ = 2 · π. It is τ ≈ 6.28318530717959.

5

Chapter 3

Variables

When calculating values in the context of a concrete client, the variables

• "w" for the previous waiting time of the client,
• "t" for the previous transfer time of the client ant
• "p" for the previous operating time of the client are always available.

If the calculation is done for getting a clients score, the variable "w" does not contain the total waiting
time of the current client but the waiting time of the current client at the current station.
Furthermore, all variables that are defined by an assignment element are always available. Before the first
assignment of a value to a variable, it has the value 0.

7

Chapter 4

Basic arithmetic operations

Supported instructions for the basic arithmetic operations:

• Addition: "+"
• Subtraction: "−"
• Multiplication: "∗"
• Division: "/"
• Potentiate: "ˆ"

The rule point before line calculation is taken into account. To enforce deviating evaluations, brackets
can be set.

9

Chapter 5

Trailing instructions

The following expressions can be written directly behind a number:

• "%": The numerical value left to this symbol is interpreted as a percent value, for example 30% = 0.3.
• "2": Exponentiate number by 2.
• "3": Exponentiate number by 3.
• "!": Calculate factorial of the number, for example 4! = 1 · 2 · 3 · 4 = 24.
• "◦": Converts the value left to this symbol from grad to radian, for example 180◦ = 3.1415

(See also section 7 in which the supported trigonometric functions are presented.)

11

Chapter 6

General functions

• "abs(x)": Absolute value, for example abs(-5)=5.
• "beta(p;q)": Beta function with p, q > 0
• "binom(n;k)": Binomial coefficient
• "cbrt(x)": Cube root, for example cbrt27=3.
• "ceil(x)": Round to next bigger integer number, for example ceil(2.1)=3

• "exp(x)": Exponential function ex.
• "factorial(x)": Factorial, for example 4! = 1 · 2 · 3 · 4 = 24.
• "floor(x)": Round to next smaller integer number, for example floor(2.9)=2

• "frac(x)": Fraction part, for example frac(1.3)=0,3

• "gamma(x)": Gamma function, for example gamma(5)=4!=24

• "gammaP(a;x)": Incomplete, regularized upper Gamma function, gammaP(a;x)= γ(a,x)
Γ (x)

• "gammaQ(a;x)": Incomplete, regularized lower Gamma function, gammaQ(a;x)= Γ (a,x)
Γ (x)

• "int(x)": Integer part, for example int(2.9)=2

• "Inverse(x)": Inverse, Inverse(x)=1/x

• "ld(x)": Logarithm to the base 2, for example ld(256)=8.
• "lg(x)": Logarithm to the base 10, for example lg(100)=2.
• "ln(x)": Logarithm to the base e.
• "log(x)": Logarithm to the base e.
• "log(x;b)": Logarithm to the base b.
• "modulo(a;b)" oder "mod(a;b)": Division reminder when dividing a/b
• "pow(x;y)": Exponentiate xy.
• "random()": Random number between 0 (inclusive) and 1 (exclusive).
• "random(x)": Random number between 0 (inclusive) and x (exclusive).
• "randomRange(x;y)": Random number between x (inclusive) and y (exclusive). Thereby x≤y has to

be satisfied.
• "randomIntRange(x;y)": Integer random number in range x and y (both inclusive). Thereby x≤y has

to be satisfied.

13

14 6 General functions

• "round(x)": Round, for example round(4.4)=4 and round(4.5)=5.
• "sign(x)": Sign of a number, for example sign(3)=1 and sign(-3)=-1.
• "sqr(x)": Square the number, for example sqr(4)=16.
• "sqrt(x)": Square root, for example sqrt81=9.

• "zeta(x)": Zeta function, for example zeta(2)=1.644934= π2

6

• "isPrime(n)": Returns 1, if n is a prime number, 0 otherwise.

6.1 Random numbers

The following commands can be used to generate random numbers that are equally distributed in
a certain area. Section 10 introduces additional functions for generating random numbers according to
certain distribution functions.

• "random()": Random number between 0 (inclusive) and 1 (exclusive).
• "random(x)": Random number between 0 (inclusive) and x (exclusive).

Chapter 7

Trigonometric functions

The trigonometric functions always refer to 2π as a full circle (radians). If angles in degrees (360◦ for the
full circle) are to be specified in the elementary trigonometric functions, these have to be converted to
radians using the angle functions, for example sin(90◦)=1.

7.1 Elementary trigonometric functions

• "sin(x)": Sine
• "cos(x)": Cosine
• "tan(x)": Tangent
• "cot(x)": Cotangent

7.2 Hyperbolic trigonometric functions

• "sinh(x)": Sine hyperbolicus
• "cosh(x)": Cosine hyperbolicus
• "tanh(x)": Tangent hyperbolicus
• "coth(x)": Cotangent hyperbolicus

7.3 Inverse of the elementary trigonometric functions

• "arcsin(x)": Arcus sine
• "arccos(x)": Arcus cosine
• "arctan(x)": Arcus tangent
• "arccot(x)": Arcus cotangent

7.4 Inverse of the hyperbolic trigonometric functions

• "arcsinh(x)": Arcus sine hyperbolicus

15

16 7 Trigonometric functions

• "arccosh(x)": Arcus cosine hyperbolicus
• "arctanh(x)": Arcus-Tangent hyperbolicus
• "arccoth(x)": Arcus-Cotangent hyperbolicus

Chapter 8

Functions with multiple parameters

The following functions can accept any number of parameters. The individual parameters have to be
specified separately by semicolon ";".

• "Min(a;b;c;...)": Calculates the minimum of the given numbers.
• "Max(a;b;c;...)": Calculates the maximum of the given numbers.
• "Range(a;b;c;...)": Calculates the range, i.e. the difference of maximum und minimum, of the given

numbers.
• "Sum(a;b;c;...)": Calculates the sum of the given numbers.
• "Mean(a;b;c;...)": Calculates the mean value of the given numbers.
• "GeomMean(a;b;c;...)": Calculates the geometric mean value of the given numbers.
• "HarmonicMean(a;b;c;...)": Calculates the harmonic mean value of the given numbers.
• "Median(a;b;c;...)": Calculates the median of the given numbers.
• "Var(a;b;c;...)": Calculates the sample variance of the given numbers.
• "SD(a;b;c;...)": Calculates the sample standard deviation of the given numbers.
• "SCV(a;b;c;...)": Calculates the squared coefficient of variation of the given numbers.
• "CV(a;b;c;...)": Calculates the coefficient of variation of the given numbers.
• "Sk(a;b;c;...)": Calculates the skewness of the values passed as parameters.
• "Kurt(a;b;c;...)": Calculates the kurtosis of the values passed as parameters.
• "gcd(a;b;c;...)": Calculates the greatest common divisor of the passed numbers. The numbers are

rounded to integers if necessary and negative signs are discarded.
• "lcm(a;b;c;...)": Calculates the least common multiple of the passed numbers. The numbers are

rounded to integers if necessary and negative signs are discarded.

17

Chapter 9

Logic functions

• "and(a;b;c;...)": Returns 1, if all parameters if all parameters are not equal to 0, and 0 otherwise.
• "or(a;b;c;...)": Returns 1, if at least one parameter is not equal to 0, and 0 otherwise.
• "xor(a;b;c;...)": Returns 1, if the number of parameters not equal to 0 is odd, and 0 otherwise.
• "not(a)": Returns 1, if the parameter is 0, and 0 otherwise.
• "nand(a;b;c;...)": Returns 0, if all parameters if all parameters are not equal to 0, and 1 otherwise.
• "nor(a;b;c;...)": Returns 0, if at least one parameter is not equal to 0, and 1 otherwise.
• "nxor(a;b;c;...)": Returns 1, if the number of parameters not equal to 0 is even, and 0 otherwise.
• "equals(a;b;c;...)": Returns 1, if all parameters have the same value, and 0 otherwise.

19

Chapter 10

Probability distributions

By using the following commands both values of the density and the cumulative distribution function of
the following probability distributions can be calculated as well as random numbers are based on one of
these probability distributions:

10.1 Geometric distribution

• "GeometricDist(k;p)": Calculates the counting probability density at k.
• "GeometricDist(p)": Generates a random number based on this distribution.

10.2 Hypergeometric distribution Hg(N, K, n)

• "HypergeometricDist(k;N;K;n)": Calculates the counting probability density at k.
• "HypergeometricDist(N;K;n)": Generates a random number based on this distribution.

10.3 Binomial distribution B(n, p)

• "BinomialDist(k;n;p)": Calculates the counting probability density at k.
• "BinomialDist(n;p)": Generates a random number based on this distribution.

10.4 Binomial distribution with mean a and standard deviation b

• "BinomialDistDirect(k;a;b)": Calculates the counting probability density at k.
• "BinomialDistDirect(a;b)": Generates a random number based on this distribution.

10.5 Poisson distribution P (l)

• "PoissonDist(k;l)": Calculates the counting probability density at k.
• "PoissonDist(l)": Generates a random number based on this distribution.

21

22 10 Probability distributions

10.6 Zeta distribution Z(s)

• "ZetaDist(k;s)": Calculates the counting probability density at k.
• "ZetaDist(s)": Generates a random number based on this distribution.

10.7 Negative hypergeometric distribution NHg(N, K, n)

• "NegativeHypergeometricDist(k;N;K;n)": Calculates the counting probability density at k.
• "NegativeHypergeometricDist(k;N;K;n)": Generates a random number based on this distribution.

10.8 Negative binomial distribution NB(r, p)

• "NegativeBinomialDist(k;r;p)": Calculates the counting probability density at k.
• "NegativeBinomialDist(r;p)": Generates a random number based on this distribution.

10.9 Negative binomial distribution with mean a and standard
deviation b

• "NegativeBinomialDist(k;a;b)": Calculates the counting probability density at k.
• "NegativeBinomialDist(a;b)": Generates a random number based on this distribution.

10.10 Discrete uniform distribution in the interval [a; b] (integer
numbers)

• "DiscreteUniformDist(k;a;b)": Calculates the counting probability density at k.
• "DiscreteUniformDist(a;b)": Generates a random number based on this distribution.

10.11 Logarithmic distribution

• "LogarithmicDist(k;p)": Calculates the counting probability density at k.
• "LogarithmicDist(p)": Generates a random number based on this distribution.

10.12 Borel distribution

• "BorelDist(k;mu)": Calculates the counting probability density at k.
• "BorelDist(mu)": Generates a random number based on this distribution.

10.13 Exponential distribution with mean a

• "ExpDist(x;a;0)": Calculates the probability density at x.

10.18 Gamma distribution with mean a and standard deviation b 23

• "ExpDist(x;a;1)": Calculates the cumulative distribution function at x.
• "ExpDist(a)": Generates a random number based on this distribution.
• "ExpDistRange(min;max;a)": Generates a random number based on this distribution but limits the

range of the value to min . . . max.

10.14 Uniform distribution in the interval [a; b]

• "UniformDist(x;a;b;0)": Calculates the probability density at x.
• "UniformDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "UniformDist(a;b)": Generates a random number based on this distribution.

10.15 Normal distribution with mean a and standard deviation b

• "NormalDist(x;a;b;0)": Calculates the probability density at x.
• "NormalDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "NormalDist(a;b)": Generates a random number based on this distribution.
• "NormalDistRange(min;max;a;b)": Generates a random number based on this distribution but limits

the range of the value to min . . . max.

10.16 Log-normal distribution with mean a and standard deviation b

• "LogNormalDist(x;a;b;0)": Calculates the probability density at x.
• "LogNormalDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "LogNormalDist(a;b)": Generates a random number based on this distribution.
• "LogNormalDistRange(min;max;a;b)": Generates a random number based on this distribution but

limits the range of the value to min . . . max.

10.17 Gamma distribution with parameters α = a and β = b

• "GammaDist(x;a;b;0)": Calculates the probability density at x.
• "GammaDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "GammaDist(a;b)": Generates a random number based on this distribution.
• "GammaDistRange(min;max;a;b)": Generates a random number based on this distribution but limits

the range of the value to min . . . max.

10.18 Gamma distribution with mean a and standard deviation b

• "GammaDistDirect(x;a;b;0)": Calculates the probability density at x.
• "GammaDistDirect(x;a;b;1)": Calculates the cumulative distribution function at x.
• "GammaDistDirect(a;b)": Generates a random number based on this distribution.

24 10 Probability distributions

• "GammaDistDirectRange(min;max;a;b)": Generates a random number based on this distribution but
limits the range of the value to min . . . max.

10.19 Erlang distribution with parameters n and λ = l

• "ErlangDist(x;n;l;0)": Calculates the probability density at x.
• "ErlangDist(x;n;l;1)": Calculates the cumulative distribution function at x.
• "ErlangDist(n;b)": Generates a random number based on this distribution.
• "ErlangDistRange(min;max;n;b)": Generates a random number based on this distribution but limits

the range of the value to min . . . max.

10.20 Beta distribution in the interval [a; b] and with parameters α = c
and β = d

• "BetaDist(x;a;b;c;d;0)": Calculates the probability density at x.
• "BetaDist(x;a;b;c;d;1)": Calculates the cumulative distribution function at x.
• "BetaDist(a;b;c;d)": Generates a random number based on this distribution.

10.21 Beta distribution in the interval [a; b] and with mean c and
standard deviation d

• "BetaDistDirect(x;a;b;c;d;0)": Calculates the probability density at x.
• "BetaDistDirect(x;a;b;c;d;1)": Calculates the cumulative distribution function at x.
• "BetaDistDirect(a;b;c;d)": Generates a random number based on this distribution.

10.22 Weibull distribution with parameters Scale=a and Form=b

• "WeibullDist(x;a;b;0)": Calculates the probability density at x.
• "WeibullDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "WeibullDist(a;b)": Generates a random number based on this distribution.
• "WeibullDistRange(min;max;a;b)": Generates a random number based on this distribution but lim-

its the range of the value to min . . . max.

10.23 Cauchy distribution with mean a and Scale=b

• "CauchyDist(x;a;b;0)": Calculates the probability density at x.
• "CauchyDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "CauchyDist(a;b)": Generates a random number based on this distribution.
• "CauchyDistRange(min;max;a;b)": Generates a random number based on this distribution but limits

the range of the value to min . . . max.

10.28 Triangular distribution over [a; c] with most likely value b 25

10.24 Chi2 distribution with n degrees of freedom

• "ChiSquareDist(x;n;0)": Calculates the probability density at x.
• "ChiSquareDist(x;n;1)": Chi2 distribution with n degrees of freedom.
• "ChiSquareDist(n)": Generates a random number based on this distribution.
• "ChiSquareDistRange(min;max;n)": Generates a random number based on this distribution but lim-

its the range of the value to min . . . max.

10.25 Chi distribution with n degrees of freedom

• "ChiDist(x;n;0)": Calculates the probability density at x.
• "ChiDist(x;n;1)": Chi distribution with n degrees of freedom.
• "ChiDist(n)": Generates a random number based on this distribution.
• "ChiDistRange(min;max;n)": Generates a random number based on this distribution but limits the

range of the value to min . . . max.

10.26 F distribution with a degrees of freedom for the numerator and b
degrees of freedom for the denominator

• "FDist(x;a;b;0)": Calculates the probability density at x.
• "FDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "FDist(a;b)": Generates a random number based on this distribution.
• "FDistRange(min;max;a;b)": Generates a random number based on this distribution but limits the

range of the value to min . . . max.

10.27 Johnson SU distribution with parameters γ = a, ξ = b, δ = c and
λ = d

• "JohnsonSUDist(x;a;b;c;d;0)": Calculates the probability density at x.
• "JohnsonSUDist(x;a;b;c;d;1)": Calculates the cumulative distribution function at x.
• "JohnsonSUDist(a;b;c;d)": Generates a random number based on this distribution.
• "JohnsonSUDistRange(min;max;a;b;c;d)": Generates a random number based on this distribution

but limits the range of the value to min . . . max.

10.28 Triangular distribution over [a; c] with most likely value b

• "TriangularDist(x;a;b;c;0)": Calculates the probability density at x.
• "TriangularDist(x;a;b;c;1)": Calculates the cumulative distribution function at x.
• "TriangularDist(a;b;c)": Generates a random number based on this distribution.

26 10 Probability distributions

10.29 Trapezoid distribution over [a; d] with uniform distribution in [b; c]

• "TrapezoidDist(x;a;b;c;d;0)": Calculates the probability density at x.
• "TrapezoidDist(x;a;b;c;d;1)": Calculates the cumulative distribution function at x.
• "TrapezoidDist(a;b;c;d)": Generates a random number based on this distribution.

10.30 Pert distribution over [a; c] with most likely value b

• "PertDist(x;a;b;c;0)": Calculates the probability density at x.
• "PertDist(x;a;b;c;1)": Calculates the cumulative distribution function at x.
• "PertDist(a;b;c)": Generates a random number based on this distribution.

10.31 Laplace distribution with mean mu and scale factor b

• "LaplaceDist(x;mu;b;0)": Calculates the probability density at x.
• "LaplaceDist(x;mu;b;1)": Calculates the cumulative distribution function at x.
• "LaplaceDist(mu;b)": Generates a random number based on this distribution.
• "LaplaceDistRange(min;max;mu;b)": Generates a random number based on this distribution but

limits the range of the value to min . . . max.

10.32 Pareto distribution with scale parameter xmin = xmin and shape
parameter α = a

• "ParetoDist(x;xmin;a;0)": Calculates the probability density at x.
• "ParetoDist(x;xmin;a;1)": Calculates the cumulative distribution function at x.
• "ParetoDist(xmin;a)": Generates a random number based on this distribution.

10.33 Logistic distribution with mean µ = mu and scale parameter s

• "LogisticDist(x;mu;s;0)": Calculates the probability density at x.
• "LogisticDist(x;mu;s;1)": Calculates the cumulative distribution function at x.
• "LogisticDist(mu;s)": Generates a random number based on this distribution.
• "LogisticDistRange(min;max;mu;s)": Generates a random number based on this distribution but

limits the range of the value to min . . . max.

10.34 Inverse gaussian distribution with λ = l and mean mu

• "InverseGaussianDist(x;l;mu;0)": Calculates the probability density at x.
• "InverseGaussianDist(x;l;mu;1)": Calculates the cumulative distribution function at x.

10.39 Gumbel distribution with expected value a and standard deviation b 27

• "InverseGaussianDist(l;mu)": Generates a random number based on this distribution.
• "InverseGaussianDist(min;max;l;mu)": Generates a random number based on this distribution but

limits the range of the value to min . . . max.

10.35 Rayleigh distribution with mean mu

• "RayleighDist(x;mu;0)": Calculates the probability density at x.
• "RayleighDist(x;mu;1)": Calculates the cumulative distribution function at x.
• "RayleighDist(mu)": Generates a random number based on this distribution.
• "RayleighDistRange(min;max;mu)": Generates a random number based on this distribution but lim-

its the range of the value to min . . . max.

10.36 Log-Logistic distribution with α and mean β

• "LogLogisticDist(x;alpha;beta;0)": Calculates the probability density at x.
• "LogLogisticDist(x;alpha;beta;1)": Calculates the cumulative distribution function at x.
• "LogLogisticDist(alpha;beta)": Generates a random number based on this distribution.
• "LogLogisticDistRange(min;max;alpha;beta)": Generates a random number based on this distri-

bution but limits the range of the value to min . . . max.

10.37 Power distribution on [a; b] with exponent c

• "PowerDist(x;a;b;c;0)": Calculates the probability density at x.
• "PowerDist(x;a;b;c;1)": Calculates the cumulative distribution function at x.
• "PowerDist(a;b;c)": Generates a random number based on this distribution.

10.38 Gumbel distribution with location a and scale b

• "GumbelDist(x;a;b;0)": Calculates the probability density at x.
• "GumbelDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "GumbelDist(a;b)": Generates a random number based on this distribution.
• "GumbelDistRange(min;max;a;b)": Generates a random number based on this distribution but limits

the range of the value to min . . . max.

10.39 Gumbel distribution with expected value a and standard
deviation b

• "GumbelDistDirect(x;a;b;0)": Calculates the probability density at x.
• "GumbelDistDirect(x;a;b;1)": Calculates the cumulative distribution function at x.
• "GumbelDistDirect(a;b)": Generates a random number based on this distribution.

28 10 Probability distributions

10.40 Fatigue life distribution with location parameter µ, scale
parameter β and form parameter γ

• "FatigueLifeDist(x;mu;beta;gamma;0)": Calculates the probability density at x.
• "FatigueLifeDist(x;mu;beta;gamma;1)": Calculates the cumulative distribution function at x.
• "FatigueLifeDist(mu;beta;gamma)": Generates a random number based on this distribution.
• "FatigueLifeDistRange(min;max;mu;beta;gamma)": Generates a random number based on this dis-

tribution but limits the range of the value to min . . . max.

10.41 Frechet distribution with location parameter δ, scale parameter
β and form parameter α

• "FrechetDist(x;delta;beta;alpha;0)": Calculates the probability density at x.
• "FrechetDist(x;delta;beta;alpha;1)": Calculates the cumulative distribution function at x.
• "FrechetDist(delta;beta;alpha)": Generates a random number based on this distribution.
• "FrechetDistRange(min;max;delta;beta;alpha)": Generates a random number based on this dis-

tribution but limits the range of the value to min . . . max.

10.42 Hyperbolic secant distribution with mean a and standard
deviation b

• "HyperbolicSecantDist(x;a;b;0)": Calculates the probability density at x.
• "HyperbolicSecantDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "HyperbolicSecantDist(a;b)": Generates a random number based on this distribution.
• "HyperbolicSecantDistRange(min;max;a;b)": Generates a random number based on this distribu-

tion but limits the range of the value to min . . . max.

10.43 Left sawtooth distribution over [a; b]

• "LeftSawtoothDist(x;a;b;0)": Calculates the probability density at x.
• "LeftSawtoothDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "LeftSawtoothDist(a;b)": Generates a random number based on this distribution.

10.44 Left sawtooth distribution with mean a and standard deviation b

• "LeftSawtoothDistDirect(x;a;b;0)": Calculates the probability density at x.
• "LeftSawtoothDistDirect(x;a;b;1)": Calculates the cumulative distribution function at x.
• "LeftSawtoothDistDirect(a;b)": Generates a random number based on this distribution.

10.50 Half normal distribution with start s and unshifted mean µ 29

10.45 Right sawtooth distribution over [a; b]

• "RightSawtoothDist(x;a;b;0)": Calculates the probability density at x.
• "RightSawtoothDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "RightSawtoothDist(a;b)": Generates a random number based on this distribution.

10.46 Right sawtooth distribution with mean a and standard deviation
b

• "RightSawtoothDistDirect(x;a;b;0)": Calculates the probability density at x.
• "RightSawtoothDistDirect(x;a;b;1)": Calculates the cumulative distribution function at x.
• "RightSawtoothDistDirect(a;b)": Generates a random number based on this distribution.

10.47 Levy distribution with location parameter µ and form parameter
c

• "LevyDist(x;mu;c;0)": Calculates the probability density at x.
• "LevyDist(x;mu;c;1)": Calculates the cumulative distribution function at x.
• "LevyDist(mu;c)": Generates a random number based on this distribution.

10.48 Maxwell Boltzmann distribution with parameter a

• "MaxwellBoltzmannDist(x;a;0)": Calculates the probability density at x.
• "MaxwellBoltzmannDist(x;a;1)": Calculates the cumulative distribution function at x.
• "MaxwellBoltzmannDist(a)": Generates a random number based on this distribution.

10.49 Student t-distribution with parameters µ and ν

• "StudentTDist(x;mu;nu;0)": Calculates the probability density at x.
• "StudentTDist(x;mu;nu;1)": Calculates the cumulative distribution function at x.
• "StudentTDist(mu;nu)": Generates a random number based on this distribution.

10.50 Half normal distribution with start s and unshifted mean µ

• "HalfNormalDist(x;s;mu;0)": Calculates the probability density at x.
• "HalfNormalDist(x;s;mu;1)": Calculates the cumulative distribution function at x.
• "HalfNormalDist(s;mu)": Generates a random number based on this distribution.

30 10 Probability distributions

10.51 U-quadratic distribution in the interval [a; b]

• "UQuadraticDist(x;a;b;0)": Calculates the probability density at x.
• "UQuadraticDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "UQuadraticDist(a;b)": Generates a random number based on this distribution.

10.52 Reciprocal distribution in the interval [a; b]

• "ReciprocalDist(x;a;b;0)": Calculates the probability density at x.
• "ReciprocalDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "ReciprocalDist(a;b)": Generates a random number based on this distribution.

10.53 Kumaraswamy distribution with parameters a und b over the
interval [c; d]

• "KumaraswamyDist(x;a;b;c;d;0)": Calculates the probability density at x.
• "KumaraswamyDist(x;a;b;c;d;1)": Calculates the cumulative distribution function at x.
• "KumaraswamyDist(a;b;c;d)": Generates a random number based on this distribution.

10.54 Irwin-Hall distribution with parameter n

• "IrwinHallDist(x;n;0)": Calculates the probability density at x.
• "IrwinHallDist(x;n;1)": Calculates the cumulative distribution function at x.
• "IrwinHallDist(n)": Generates a random number based on this distribution.

10.55 Irwin-Hall distribution with mean a

• "IrwinHallDist(x;a;0)": Calculates the probability density at x.
• "IrwinHallDist(x;a;1)": Calculates the cumulative distribution function at x.
• "IrwinHallDist(a)": Generates a random number based on this distribution.

10.56 Sine distribution in the interval [a; b]

• "SineDist(x;a;b;0)": Calculates the probability density at x.
• "SineDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "SineDist(a;b)": Generates a random number based on this distribution.

10.60 Distribution based on empirical values 31

10.57 Arcsine distribution in the interval [a; b]

• "ArcsineDist(x;a;b;0)": Calculates the probability density at x.
• "ArcsineDist(x;a;b;1)": Calculates the cumulative distribution function at x.
• "ArcsineDist(a;b)": Generates a random number based on this distribution.

10.58 Wigner half-circle distribution with mean m and radius R

• "WignerHalfCircleDist(x;m;R;0)": Calculates the probability density at x.
• "WignerHalfCircleDist(x;m;R;1)": Calculates the cumulative distribution function at x.
• "WignerHalfCircleDist(m;R)": Generates a random number based on this distribution.

10.59 Log-Cauchy distribution with parameters mu and sigma

• "LogCauchyDist(x;mu;sigma;0)": Calculates the probability density at x.
• "LogCauchyDist(x;mu;sigma;1)": Calculates the cumulative distribution function at x.
• "LogCauchyDist(mu;sigma)": Generates a random number based on this distribution.

10.60 Distribution based on empirical values

• "EmpiricalDensity(x;value1;value2;value3;...;max)":
Calculates the probability density at x. The specified values will be used for the density in the range
from 0 to max.

• "EmpiricalDistribution(x;value1;value2;value3;...;max)":
Calculates the cumulative distribution function at x. The specified values will be used for the density
in the range from 0 to max.

• "EmpiricalRandom(value1;value2;value3;...;max)":
Generates a random number based on this distribution. The specified values will be used for the density
in the range from 0 to max.

• "EmpiricalDistributionMean(value1;value2;value3;...;max)":
Calculates the expected value of the distribution.

• "EmpiricalDistributionMedian(value1;value2;value3;...;max)":
Calculates the median of the distribution.

• "EmpiricalDistributionQuantil(value1;value2;value3;...;max;p)":
Calculates the quantil for the probability p of the distribution.

• "EmpiricalDistributionSD(value1;value2;value3;...;max)":
Calculates the standard deviation of the distribution.

• "EmpiricalDistributionVar(value1;value2;value3;...;max)":
Calculates the variance of the distribution.

• "EmpiricalDistributionCV(value1;value2;value3;...;max)":
Calculates the coefficient of variation of the distribution.

Chapter 11

Erlang C calculator

By using the following command some performance indicators can be calculated using the extended
Erlang C formula:

• "ErlangC(lambda;mu;nu;c;K;-1)":
Calculates the average queue length E[NQ].

• "ErlangC(lambda;mu;nu;c;K;-2)":
Calculates the average number of clients in the system E[N].

• "ErlangC(lambda;mu;nu;c;K;-3)":
Calculates the average waiting time E[W].

• "ErlangC(lambda;mu;nu;c;K;-4)":
Calculates the average residence time E[V].

• "ErlangC(lambda;mu;nu;c;K;-5)":
Calculates the average accessibility 1 − P (A).

• "ErlangC(lambda;mu;nu;c;K;t)":
Calculates the the probability for the service level at the t seconds threshold P (W ≤ t).

The parameters have the following meanings:

• lambda:
Arrival rate λ (in clients per time unit), i.e. inverse of the mean inter-arrival time.

• mu:
Service rate µ (in clients per time unit), i.e. inverse of the mean service time.

• nu:
Cancelation rate ν (in clients per time unit), i.e. inverse of the mean waiting time tolerance.

• c:
Number of available parallel operating servers.

• K:
Number of available places in the system (waiting and processing places together, i.e. it is K ≥ c).

11.1 Random selection of one of several values

"RandomValues(rate1;value1;rate2;value2;...)" Randomly selects one of the given values each time
(according to the given rates).

33

34 11 Erlang C calculator

Example: "RandomValues(1;3;2;5)"
will return in 1

3 (rate 1) of all cases the value 3 and in 2
3 (rate 2) of all cases the value 5.

11.2 Random numbers according to a user-defined distribution

"RandomGenerator(distribution(RandomGeneratorX());min;max)"
Generates a random number according to the probability distribution specified in the first parameter
(using RandomGeneratorX() as distribution parameter) in the range specified by the second and the
third parameter.
Example:
"RandomGenerator(ExpDist(RandomGeneratorX();5;1);0;100)"
will generate a random number according to the exponential distribution with mean 5.

Chapter 12

Allen-Cunneen approximation formula

By using the following command some performance indicators can be calculated using the Allen-Cunneen
approximation formula:

• "AllenCunneen(lambda;mu;cvI;cvS;c;-1)":
Calculates the average queue length E[NQ].

• "AllenCunneen(lambda;mu;cvI;cvS;c;-2)":
Calculates the average number of clients in the system E[N].

• "AllenCunneen(lambda;mu;cvI;cvS;c;-3)":
Calculates the average waiting time E[W].

• "AllenCunneen(lambda;mu;cvI;cvS;c;-4)":
Calculates the average residence time E[V].

The parameters have the following meanings:

• lambda:
Arrival rate λ (in clients per time unit), i.e. inverse of the mean inter-arrival time.

• mu:
Service rate µ (in clients per time unit), i.e. inverse of the mean service time.

• cvI:
Coefficient of variation of the inter-arrival times CV[I] (small values mean that the inter-arrival times
are very homogeneous).

• cvS:
Coefficient of variation of the service times CV[S] (small values mean that the operations are very
homogeneous).

• c:
Number of available parallel operating servers.

35

Chapter 13

Accessing model properties

Note: Several alternative parameterizations are possible for the commands shown below for querying a
property a client type at a station (each of which uses the ID of a station as a parameter):

• "Command(id)": Query property at station id abfragen (across all client types).
• "Command(id)": Query property for clients generated at source id (across all stations).
• "Command(id1;id2)": Query property at station id1 for clients generated at source id2.
• "Command(id;nr)": Query property for clients generated at source id as record nr (1-based) (across

all stations).
• "Command(id1;id2;nr)": Query property at station id1 for clients generated at source id2 as record

nr (1-based).

13.1 General simulation data

• "SimTime()" or "TNow()":
Returns the current simulation time in seconds.

• "TNowTime()":
Returns the current simulation time within the day as a value per second, i.e. a value between 0
(inclusive) and 86400 (exclusive).

• "TNowDay()":
Returns the current simulation day, i.e. an integer of 0 or a higher value.

• "WarmUp()" or "isWarmUp()":
Returns 1 if the simulation is in the warm-up phase, otherwise 0.

• "RepeatCurrent()":
Returns the current repeat number of the simulation (1-based value).

• "RepeatCount()":
Returns the number of planned repeats of the simulation.

• "$("Name")":
Returns the ID of the element with the name which is enter between the quotation marks. If there is
not station with this name, the function will return -1.

• "$("Key")":
Returns the value from the map which can be accessed by getMapGlobal() at scripting elements.

37

38 13 Accessing model properties

13.2 Clients in the system

13.2.1 Number of clients in the system

• "WIP()" or "N()" or "Station()":
Gets the current total number of clients in the system.

• "WIP_avg()" or "Station_avg()" or "N_avg()" or "WIP_Mittelwert()" or
"Station_Mittelwert()" or "N_Mittelwert()":
Gets the average number of clients in the system.
"WIP_median()" or "Station_median()" or "N_median()":
Gets the median of the number of clients in the system.
"WIP_quantil(p)" or "Station_quantil(p)" or "N_quantil(p)":
Gets the quantil for the probability p of the number of clients in the system.

• "WIP_min()" or "Station_min()" or "N_min()" or "WIP_Minimum()" or
"Station_Minimum()" or "N_Minimum()":
Gets the minimal number of clients in the system.

• "WIP_max()" or "Station_max()" or "N_max()" or "WIP_Maximum()" or
"Station_Maximum()" or "N_Maximum()":
Gets the maximal number of clients in the system.

• "WIP_var()" or "Station_var()" or "N_var()" or "WIP_Varianz()" or
"Station_Varianz()" or "N_Varianz()":
Gets the variation of the number of clients in the system.

• "WIP_sd()" or "Station_sd()" or "N_sd()" or "WIP_Standardabweichung()" or
"Station_Standardabweichung()" or "N_Standardabweichung()":
Gets the standard deviation of the number of clients in the system.

• "WIP_cv()" or "Station_cv()" or "N_cv()":
Gets the coefficient of variation of the number of clients in the system.

• "WIP_scv()" or "Station_scv()" or "N_scv()":
Gets the squared coefficient of variation of the number of clients in the system.

• "WIP_sk()" or "Station_sk()" or "N_sk()":
Gets the skewness of the number of clients in the system.

• "WIP_kurt()" or "Station_kurt()" or "N_kurt()":
Gets the excess kurtosis of the number of clients in the system.

13.2.2 Number of waiting clients in the system

• "NQ()" or "Queue()" or "Schlange()" or "Warteschlange()":
Gets the current total number of waiting clients in the system.

• "NQ_avg()" or "Queue_avg()" or "Schlange_avg()" or "Warteschlange_avg()" or
"NQ_Mittelwert()" or "Queue_Mittelwert()" or "Schlange_Mittelwert()" or
"Warteschlange_Mittelwert()":
Gets the average number of waiting clients in the system.

• "NQ_median()" or "Queue_median()" or "Schlange_median()" or "Warteschlange_median()":
Gets the median of the number of clients in all queues.

13.2 Clients in the system 39

• "NQ_quantil(p)" or "Queue_quantil(p)" or "Schlange_quantil(p)" or
"Warteschlange_quantil(p)":
Gets the quantil for the probability p of the number of clients in all queues.

• "NQ_min()" or "Queue_min()" or "Schlange_min()" or "Warteschlange_min()" or
"NQ_Minimum()" or "Queue_Minimum()" or "Schlange_Minimum()" or
"Warteschlange_Minimum()":
Gets the minimal number of waiting clients in the system.

• "NQ_max()" or "Queue_max()" or "Schlange_max()" or "Warteschlange_max()" or
"NQ_Maximum()" or "Queue_Maximum()" or "Schlange_Maximum()" or
"Warteschlange_Maximum()":
Gets the maximal number of waiting clients in the system.

• "NQ_var()" or "Queue_var()" or "Schlange_var()" or "Warteschlange_var()" or
"NQ_Varianz()" or "Queue_Varianz()" or "Schlange_Varianz()" or
"Warteschlange_Varianz()":
Gets the variation of the number of waiting clients in the system.

• "NQ_sd()" or "Queue_sd()" or "Schlange_sd()" or "Warteschlange_sd()" or
"NQ_Standardabweichung()" or "Queue_Standardabweichung()" or
"Schlange_Standardabweichung()" or "Warteschlange_Standardabweichung()":
Gets the standard deviation of the number of waiting clients in the system.

• "NQ_cv()" or "Queue_cv()" or "Schlange_cv()" or "Warteschlange_cv()":
Gets the coefficient of variation of the number of waiting clients in the system.

• "NQ_scv()" or "Queue_scv()" or "Schlange_scv()" or "Warteschlange_scv()":
Gets the squared coefficient of variation of the number of waiting clients in the system.

• "NQ_sk()" or "Queue_sk()" or "Schlange_sk()" or "Warteschlange_sk()":
Gets the skewness of the number of waiting clients in the system.

• "NQ_kurt()" or "Queue_kurt()" or "Schlange_kurt()" or "Warteschlange_kurt()":
Gets the excess kurtosis of the number of waiting clients in the system.

13.2.3 Number of clients in service process in the system

• "Process()" or "NS()":
Gets the current total number of clients in service process in the system.

• "Process_avg()" or "NS_avg()" or "Process_Mittelwert()" or "NS_Mittelwert()":
Gets the average number of clients in service process in the system.

• "Process_median()" or "NS_median()":
Gets the median of the number of clients in service process.

• "Process_quantil(p)" or "NS_quantil(p)":
Gets the quantil for the probability p of the number of clients in service process.

• "Process_min()" or "NS_min()" or "Process_Minimum()" or "NS_Minimum()":
Gets the minimal number of clients in service process in the system.

• "Process_max()" or "NS_max()" or "Process_Maximum()" or "NS_Maximum()":
Gets the maximal number of clients in service process in the system.

• "Process_var()" or "NS_var()" or "Process_Varianz()" or "NS_Varianz()":
Gets the variation of the number of clients in service process in the system.

40 13 Accessing model properties

• "Process_sd()" or "NS_sd()" or "Process_Standardabweichung()" or "NS_Standardabweichung()":
Gets the standard deviation of the number of clients in service process in the system.

• "Process_cv()" or "NS_cv()":
Gets the coefficient of variation of the number of clients in service process in the system.

• "Process_scv()" or "NS_scv()":
Gets the squared coefficient of variation of the number of clients in service process in the system.

• "Process_sk()" or "NS_sk()":
Gets the skewness of the number of clients in service process in the system.

• "Process_kurt()" or "NS_kurt()":
Gets the excess kurtosis of the number of clients in service process in the system.

13.3 Clients at the stations

13.3.1 Number of clients at a station

• "WIP(id)" or "N(id)" or "Station(id)":
Gets the current total number of clients at station id.

• "WIP(id1;id2)" or "N(id1;id2)" or "Station(id1;id2)":
Gets the current total number of clients at station id1. Only clients of the type, whos name appears
at the source or the type assignment id2, are respected.

• "WIP_avg(id)" or "Station_avg(id)" or "N_avg(id)" or "WIP_Mittelwert(id)" or
"Station_Mittelwert(id)" or "N_Mittelwert(id)":
Gets the average number of clients at station id.

• "WIP_median(id)" or "Station_median(id)" or "N_median(id)":
Gets the medium of the number of clients at station id.

• "WIP_quantil(p;id)" or "Station_quantil(p;id)" or "N_quantil(p;id)":
Gets the quantil for the probability p of the clients at station id.

• "WIP_min(id)" or "Station_min(id)" or "N_min(id)" or "WIP_Minimum(id)" or
"Station_Minimum(id)" or "N_Minimum(id)":
Gets the minimal number of clients at station id.

• "WIP_max(id)" or "Station_max(id)" or "N_max(id)" or "WIP_Maximum(id)" or
"Station_Maximum(id)" or "N_Maximum(id)":
Gets the maximal number of clients at station id.

• "WIP_var(id)" or "Station_var(id)" or "N_var(id)" or "WIP_Varianz(id)" or
"Station_Varianz(id)" or "N_Varianz(id)":
Gets the variation of the number of clients at station id.

• "WIP_sd(id)" or "Station_sd(id)" or "N_sd(id)" or "WIP_Standardabweichung(id)" or
"Station_Standardabweichung(id)" or "N_Standardabweichung(id)":
Gets the standard deviation of the number of clients at station id.

• "WIP_cv(id)" or "Station_cv(id)" or "N_cv(id)":
Gets the coefficient of variation of the number of clients at station id.

• "WIP_scv(id)" or "Station_scv(id)" or "N_scv(id)":
Gets the squared coefficient of variation of the number of clients at station id.

13.3 Clients at the stations 41

• "WIP_sk(id)" or "Station_sk(id)" or "N_sk(id)":
Gets the skewness of the number of clients at station id.

• "WIP_kurt(id)" or "Station_kurt(id)" or "N_kurt(id)":
Gets the excess kurtosis of the number of clients at station id.

• "WIP_hist(id;state)" or "Station_hist(id;state)" or "N_hist(id;state)":
Gets the fraction of time, the system was in the given state in relation of the number of clients at
stations id.

• "WIP_hist(id;stateA;stateB)" or "Station_hist(id;stateA;stateB)" or
"N_hist(id;stateA;stateB)":
Gets the fraction of time, when there are more than stateA and at most stateB clients at station id.

13.3.2 Number of clients at the queue at a station

• "NQ(id)" or "Queue(id)" or "Schlange(id)" or "Warteschlange(id)":
Gets the current total number of clients in the queue at station id.

• "NQ(id;nr)" or "Queue(id;nr)" or "Schlange(id;nr)" or "Warteschlange(id;nr)":
Gets the current total number of clients in the partial queue <nr (1 based) at station id. (This
command can only be used with "Match" elements.)

• "NQ_avg(id)" or "Queue_avg(id)" or "Schlange_avg(id)" or "Warteschlange_avg(id)" or
"NQ_Mittelwert(id)" or "Queue_Mittelwert(id)" or "Schlange_Mittelwert(id)" or
"Warteschlange_Mittelwert(id)":
Gets the average number of clients in the queue at station id.

• "NQ_median(id)" or "Queue_median(id)" or "Schlange_median(id)" or
"Warteschlange_median(id)":
Gets the median of the number of clients in the queue at station id.

• "NQ_quantil(p;id)" or "Queue_quantil(p;id)" or "Schlange_quantil(p;id)" or
"Warteschlange_quantil(p;id)":
Gets the quantil for the probability p of the number of clients in the queue at station id.

• "NQ_min(id)" or "Queue_min(id)" or "Schlange_min(id)" or "Warteschlange_min(id)" or
"NQ_Minimum(id)" or "Queue_Minimum(id)" or "Schlange_Minimum(id)" or
"Warteschlange_Minimum(id)":
Gets the minimal number of clients in the queue at station id.

• "NQ_max(id)" or "Queue_max(id)" or "Schlange_max(id)" or "Warteschlange_max(id)" or
"NQ_Maximum(id)" or "Queue_Maximum(id)" or "Schlange_Maximum(id)" or
"Warteschlange_Maximum(id)":
Gets the maximal number of clients in the queue at station id.

• "NQ_var(id)" or "Queue_var(id)" or "Schlange_var(id)" or "Warteschlange_var(id)" or
"NQ_Varianz(id)" or "Queue_Varianz(id)" or "Schlange_Varianz(id)" or
"Warteschlange_Varianz(id)":
Gets the variation of the number of clients in the queue at station id.

• "NQ_sd(id)" or "Queue_sd(id)" or "Schlange_sd(id)" or "Warteschlange_sd(id)" or
"NQ_Standardabweichung(id)" or "Queue_Standardabweichung(id)" or
"Schlange_Standardabweichung(id)" or "Warteschlange_Standardabweichung(id)":
Gets the standard deviation of the number of clients in the queue at station id.

• "NQ_cv(id)" or "Queue_cv(id)" or "Schlange_cv(id)" or "Warteschlange_cv(id)":
Gets the coefficient of variation of the number of clients in the queue at station id.

42 13 Accessing model properties

• "NQ_scv(id)" or "Queue_scv(id)" or "Schlange_scv(id)" or "Warteschlange_scv(id)":
Gets the squared coefficient of variation of the number of clients in the queue at station id.

• "NQ_sk(id)" or "Queue_sk(id)" or "Schlange_sk(id)" or "Warteschlange_sk(id)":
Gets the skewness of the number of clients in the queue at station id.

• "NQ_kurt(id)" or "Queue_kurt(id)" or "Schlange_kurt(id)" or "Warteschlange_kurt(id)":
Gets the excess kurtosis of the number of clients in the queue at station id.

• "NQ_hist(id;state)" or "Queue_hist(id;state)" or "Schlange_hist(id;state)" or
"Warteschlange_hist(id;state)":
Gets the fraction of time, when there are state clients in the queue at station id.

• "NQ_hist(id;stateA;stateB)" or "Queue_hist(id;stateA;stateB)" or
"Schlange_hist(id;stateA;stateB)" or "Warteschlange_hist(id;stateA;stateB)":
Gets the fraction of time, when there are more than stateA and at most stateB clients in the queue
at station id.

13.3.3 Number of clients in service process at a station

• "Process(id)":
Gets the current number of clients in service process at station id.

• "Process_avg(id)" or "NS_avg(id)" or "Process_Mittelwert(id)" or "NS_Mittelwert(id)":
Gets the average number of clients in service process at station id.

• "Process_median(id)" or "NS_median(id)":
Gets the median of the number of clients in service process at station id.

• "Process_quantil(p;id)" or "NS_quantil(p;id)":
Gets the quantil for the probability p of the number of clients in service process at station id.

• "Process_min(id)" or "NS_min(id)" or "Process_Minimum(id)" or "NS_Minimum(id)":
Gets the minimal number of clients in service process at station id.

• "Process_max(id)" or "NS_max(id)" or "Process_Maximum(id)" or "NS_Maximum(id)":
Gets the maximal number of clients in service process at station id.

• "Process_var(id)" or "NS_var(id)" or "Process_Varianz(id)" or "NS_Varianz(id)":
Gets the variation of the number of clients in service process at station id.

• "Process_sd(id)" or "NS_sd(id)" or "Process_Standardabweichung(id)" or "NS_Standardabweichung(id)":
Gets the standard deviation of the number of clients in service process at station id.

• "Process_cv(id)" or "NS_cv(id)":
Gets the coefficient of variation of the number of clients in service process at station id.

• "Process_scv(id)" or "NS_scv(id)":
Gets the squared coefficient of variation of the number of clients in service process at station id.

• "Process_sk(id)" or "NS_sk(id)":
Gets the skewness of the number of clients in service process at station id.

• "Process_kurt(id)" or "NS_kurt(id)":
Gets the excess kurtosis of the number of clients in service process at station id.

• "Process_hist(id;state)" or "NS_hist(id;state)":
Gets the fraction of time, when there are state clients in service process at station id.

13.4 Clients in system by client type 43

• "Process_hist(id;stateA;stateB)" or "NS_hist(id;stateA;stateB)":
Gets the fraction of time, when there are more than stateA and at most stateB clients in service
process at station id.

13.3.4 Number of arrivals and departures at a station

• "NumberIn(id)" or "CountIn(id)":
Gets the number of client arrivals at station id.

• "NumberOut(id)" or "CountOut(id)":
Gets the number of client departures at station id.

13.4 Clients in system by client type

13.4.1 Number of clients in the system by client type

• "WIP(id)" or "N(id)" or "Station(id)":
Gets the current total number of clients, whos name appears at the source or the type assignment id.
(alternative parameterization possible)

• "WIP_avg(id)" or "Station_avg(id)" or "N_avg(id)" or "WIP_Mittelwert(id)" or
"Station_Mittelwert(id)" or "N_Mittelwert(id)":
Gets the average number of clients, whos name appears at the source or the type assignment id.
(alternative parameterization possible)

• "WIP_median(id)" or "Station_median(id)" or "N_median(id)":
Gets the median of the number of clients, whos name appears at the source or the type assignment
id, in the system. (alternative parameterization possible)

• "WIP_quantil(p;id)" or "Station_quantil(p;id)" or "N_quantil(p;id)":
Gets the quantil for the probability p of the number of clients, whos name appears at the source or
the type assignment id, in the system.

• "WIP_min(id)" or "Station_min(id)" or "N_min(id)" or "WIP_Minimum(id)" or
"Station_Minimum(id)" or "N_Minimum(id)":
Gets the minimal number of clients, whos name appears at the source or the type assignment id.
(alternative parameterization possible)

• "WIP_max(id)" or "Station_max(id)" or "N_max(id)" or "WIP_Maximum(id)" or
"Station_Maximum(id)" or "N_Maximum(id)":
Gets the maximal number of clients, whos name appears at the source or the type assignment id.
(alternative parameterization possible)

• "WIP_var(id)" or "Station_var(id)" or "N_var(id)" or "WIP_Varianz(id)" or
"Station_Varianz(id)" or "N_Varianz(id)":
Gets the variation of the number of clients, whos name appears at the source or the type assignment
id. (alternative parameterization possible)

• "WIP_sd(id)" or "Station_sd(id)" or "N_sd(id)" or "WIP_Standardabweichung(id)" or
"Station_Standardabweichung(id)" or "N_Standardabweichung(id)":
Gets the standard deviation of the number of clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

44 13 Accessing model properties

• "WIP_cv(id)" or "Station_cv(id)" or "N_cv(id)":
Gets the coefficient of variation of the number of clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "WIP_scv(id)" or "Station_scv(id)" or "N_scv(id)":
Gets the squared coefficient of variation of the number of clients, whos name appears at the source or
the type assignment id. (alternative parameterization possible)

• "WIP_sk(id)" or "Station_sk(id)" or "N_sk(id)":
Gets the skewness of the number of clients, whos name appears at the source or the type assignment
id. (alternative parameterization possible)

• "WIP_kurt(id)" or "Station_kurt(id)" or "N_kurt(id)":
Gets the excess kurtosis of the number of clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "WIP_hist(id;state)" or "Station_hist(id;state)" or "N_hist(id;state)":
Gets the fraction of time, the system was in the given state in relation of the number of clients, whos
name appears at the source or the type assignment id.

• "WIP_hist(id;stateA;stateB)" or "Station_hist(id;stateA;stateB)" or
"N_hist(id;stateA;stateB)":
Gets the fraction of time, when there are more than stateA and at most stateB clients, whos name
appears at the source or the type assignment id, in the system.

13.4.2 Number of waiting clients in the system by client type

• "NQ(id)" or "Queue(id)" or "Schlange(id)" or "Warteschlange(id)":
Gets the current total number of waiting clients, whos name appears at the source or the type assign-
ment id. (alternative parameterization partially possible)

• "NQ_avg(id)" or "Queue_avg(id)" or "Schlange_avg(id)" or "Warteschlange_avg(id)" or
"NQ_Mittelwert(id)" or "Queue_Mittelwert(id)" or "Schlange_Mittelwert(id)" or
"Warteschlange_Mittelwert(id)":
Gets the average number of waiting clients, whos name appears at the source or the type assignment
id. (alternative parameterization possible)

• "NQ_median(id)" or "Queue_median(id)" or "Schlange_median(id)" or
"Warteschlange_median(id)":
Gets the median of the number of waiting clients, whos name appears at the source or the type
assignment id, in the system. (alternative parameterization possible)

• "NQ_quantil(p;id)" or "Queue_quantil(p;id)" or "Schlange_quantil(p;id)" or
"Warteschlange_quantil(p;id)":
Gets the quantil for the probability p of the number of waiting clients, whos name appears at the
source or the type assignment id, in the system.

• "NQ_min(id)" or "Queue_min(id)" or "Schlange_min(id)" or "Warteschlange_min(id)" or
"NQ_Minimum(id)" or "Queue_Minimum(id)" or "Schlange_Minimum(id)" or
"Warteschlange_Minimum(id)":
Gets the minimal number of waiting clients, whos name appears at the source or the type assignment
id. (alternative parameterization possible)

• "NQ_max(id)" or "Queue_max(id)" or "Schlange_max(id)" or "Warteschlange_max(id)" or
"NQ_Maximum(id)" or "Queue_Maximum(id)" or "Schlange_Maximum(id)" or
"Warteschlange_Maximum(id)":

13.4 Clients in system by client type 45

Gets the maximal number of waiting clients, whos name appears at the source or the type assignment
id. (alternative parameterization possible)

• "NQ_var(id)" or "Queue_var(id)" or "Schlange_var(id)" or "Warteschlange_var(id)" or
"NQ_Varianz(id)" or "Queue_Varianz(id)" or "Schlange_Varianz(id)" or
"Warteschlange_Varianz(id)":
Gets the variation of the number of waiting clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "NQ_sd(id)" or "Queue_sd(id)" or "Schlange_sd(id)" or "Warteschlange_sd(id)" or
"NQ_Standardabweichung(id)" or "Queue_Standardabweichung(id)" or
"Schlange_Standardabweichung(id)" or "Warteschlange_Standardabweichung(id)":
Gets the standard deviation of the number of waiting clients, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

• "NQ_cv(id)" or "Queue_cv(id)" or "Schlange_cv(id)" or "Warteschlange_cv(id)":
Gets the coefficient of variation of the number of waiting clients, whos name appears at the source or
the type assignment id. (alternative parameterization possible)

• "NQ_scv(id)" or "Queue_scv(id)" or "Schlange_scv(id)" or "Warteschlange_scv(id)":
Gets the squared coefficient of variation of the number of waiting clients, whos name appears at the
source or the type assignment id. (alternative parameterization possible)

• "NQ_sk(id)" or "Queue_sk(id)" or "Schlange_sk(id)" or "Warteschlange_sk(id)":
Gets the skewness of the number of waiting clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "NQ_kurt(id)" or "Queue_kurt(id)" or "Schlange_kurt(id)" or "Warteschlange_kurt(id)":
Gets the excess kurtosis of the number of waiting clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "NQ_hist(id;state)" or "Queue_hist(id;state)" or "Schlange_hist(id;state)" or
"Warteschlange_hist(id;state)":
Gets the fraction of time, when there are state waiting clients, whos name appears at the source or
the type assignment id, are in the system.

• "NQ_hist(id;stateA;stateB)" or "Queue_hist(id;stateA;stateB)" or
"Schlange_hist(id;stateA;stateB)" or "Warteschlange_hist(id;stateA;stateB)":
Gets the fraction of time, when there are more than stateA and at most stateB waiting clients, whos
name appears at the source or the type assignment id, in the system.

13.4.3 Number of clients in service process by client type

• "Process_avg(id)" or "NS_avg(id)" or "Process_Mittelwert(id)" or "NS_Mittelwert(id)":
Gets the average number of clients in service process, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "Process_median(id)" or "NS_median(id)":
Gets the median of the number of clients in service process, whos name appears at the source or the
type assignment id, in the system. (alternative parameterization possible)

• "Process_quantil(p;id)" or "NS_quantil(p;id)":
Gets the quantil for the probability p of the number of clients in service process, whos name appears
at the source or the type assignment id, in the system.

• "Process_min(id)" or "NS_min(id)" or "Process_Minimum(id)" or "NS_Minimum(id)":
Gets the minimal number of clients in service process, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

46 13 Accessing model properties

• "Process_max(id)" or "NS_max(id)" or "Process_Maximum(id)" or "NS_Maximum(id)":
Gets the maximal number of clients in service process, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "Process_var(id)" or "NS_var(id)" or "Process_Varianz(id)" or "NS_Varianz(id)":
Gets the variation of the number of clients in service process, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

• "Process_sd(id)" or "NS_sd(id)" or "Process_Standardabweichung(id)" or "NS_Standardabweichung(id)":
Gets the standard deviation of the number of clients in service process, whos name appears at the
source or the type assignment id. (alternative parameterization possible)

• "Process_cv(id)" or "NS_cv(id)":
Gets the coefficient of variation of the number of clients in service process, whos name appears at the
source or the type assignment id. (alternative parameterization possible)

• "Process_scv(id)" or "NS_scv(id)":
Gets the squared coefficient of variation of the number of clients in service process, whos name appears
at the source or the type assignment id. (alternative parameterization possible)

• "Process_sk(id)" or "NS_sk(id)":
Gets the skewness of the number of clients in service process, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

• "Process_kurt(id)" or "NS_kurt(id)":
Gets the excess kurtosis of the number of clients in service process, whos name appears at the source
or the type assignment id. (alternative parameterization possible)

• "Process_hist(id;state)" or "NS_hist(id;state)":
Gets the fraction of time, when there are state clients in service process, whos name appears at the
source or the type assignment id, are in the system.

• "Process_hist(id;stateA;stateB)" or "NS_hist(id;stateA;stateB)":
Gets the fraction of time, when there are more than stateA and at most stateB clients in service
process, whos name appears at the source or the type assignment id, in the system.

13.5 Counter and throughput

• "Counter(id)" or "Value(id)":
Gets the value of the counter at station id.
(Can only be applied on "Difference counter", "Counter" and "Throughput" elements.)

• "Anteil(id)" or "Part(id)":
Gets the share of the counter value in the counter group.
(Can only be applied on "Counter" elements.)

• "Zähler_Mittelwert(id)" oder "Zähler_Mittel(id)" oder "Counter_Mean(id)" oder "Counter_Average(id)"
oder "Counter_avg(id)" oder "Value_Mean(id)" oder "Value_Average(id)" oder "Value_avg(id)"
oder "Wert_Mittelwert(id)" oder "Wert_Mittel(id)":
Returns the mean value of the differnce counter whose id has been specified in the parameter.

• "Zähler_Maximum(id)" oder "Zähler_Max(id)" oder "Counter_Maximum(id)" oder "Counter_Max(id)"
oder "Value_Maximum(id)" oder "Value_Max(id)" oder "Wert_Maximum(id)" oder "Wert_Max(id)":
Returns the maximum value of the differnce counter whose id has been specified in the parameter.

• "Zähler_Minimum(id)" oder "Zähler_Min(id)" oder "Counter_Minimum(id)" oder "Counter_Min(id)"
oder "Value_Minimum(id)" oder "Value_Min(id)" oder "Wert_Minimum(id)" oder "Wert_Min(id)":
Returns the minimum value of the differnce counter whose id has been specified in the parameter.

13.6 Waiting times 47

• "Zähler_Standardabweichung(id)" oder "Zähler_Std(id)" oder "Zähler_SD(id)" oder "Counter_Std(id)"
oder "Counter_SD(id)" oder "Value_Std(id)" oder "Value_SD(id)" oder "Wert_Standardabweichung(id)"
oder "Wert_Std(id)" oder "Wert_SD(id)":
Returns the standard deviation of the differnce counter whose id has been specified in the parameter.

• "Durchsatz(id)" or "Throughput(id)" or "ArrivalRate(id)":
Gets the throughput measured in arrivals per second at station id.

• "Durchsatz()" or "Throughput()" or "ArrivalRate()":
Gets the throughput measured in arrivals per second in the system.

• "DurchsatzMax(id)" or "ThroughputMax(id)":
Gets the maximum measured throughput measured in arrivals per second at station id.

• "DurchsatzMaxIntervall(id)" or "ThroughputMaxInterval(id)":
Gets the interval length in seconds used to record the maximum throughput at station id.

13.6 Waiting times

13.6.1 Waiting times at a station

• "WaitingTime_sum(id)" or "WaitingTime_gesamt(id)" or "WaitingTime_summe(id)":
Gets the sum of the waiting times at the station id (in seconds).

• "WaitingTime_avg(id)" or "WaitingTime_average(id)" or "WaitingTime_Mittelwert(id)":
Gets the average waiting time of the clients at station id (in seconds).

• "WaitingTime_median(id)":
Gets the median of the waiting times of the clients at station id (in seconds).

• "WaitingTime_quantil(p;id)":
Gets the quantil for the probability p of the waiting times of the clients at station id (in seconds).

• "WaitingTime_min(id)" or "WaitingTime_Minimum(id)":
Gets the minimum waiting time of the clients at station id (in seconds).

• "WaitingTime_max(id)" or "WaitingTime_Maximum(id)":
Gets the maximum waiting time of the clients at station id (in seconds).

• "WaitingTime_var(id)" or "WaitingTime_Varianz(id)":
Gets the variation of the waiting times of the clients at station id (based on seconds).

• "WaitingTime_sd(id)" or "WaitingTime_Standardabweichung(id)":
Gets the standard deviation of the waiting times of the clients at station id (based on seconds).

• "WaitingTime_cv(id)":
Gets the coefficient of variation of the waiting times of the clients at station id.

• "WaitingTime_scv(id)":
Gets the squared coefficient of variation of the waiting times of the clients at station id.

• "WaitingTime_sk(id)":
Gets the skewness of the waiting times of the clients at station id.

• "WaitingTime_kurt(id)":
Gets the excess kurtosis of the waiting times of the clients at station id.

• "WaitingTime_hist(id;time)":
Gets the fraction of clients for which the waiting time at stations id was time seconds.

48 13 Accessing model properties

• "WaitingTime_hist(id;timeA;timeB)":
Gets the fraction of clients for which the waiting time at stations id was more than timeA and at most
timeB seconds.

13.6.2 Waiting times over all client types

• "WaitingTime_avg()" or "WaitingTime_average()" or "WaitingTime_Mittelwert()":
Get the average waiting time over all clients (in seconds).

• "WaitingTime_median()":
Get the median of the waiting times over all clients (in seconds).

• "WaitingTime_quantil(p)":
Gets the quantil for the probability p of the waiting times over all clients (in seconds).

• "WaitingTime_min()" or "WaitingTime_Minimum()":
Get the minimum waiting time over all clients (in seconds).

• "WaitingTime_max()" or "WaitingTime_Maximum()":
Get the maximum waiting time over all clients (in seconds).

• "WaitingTime_var()" or "WaitingTime_Varianz()":
Gets the variation of the waiting times over all clients (based on seconds).

• "WaitingTime_sd()" or "WaitingTime_Standardabweichung()":
Gets the standard deviation of the waiting times over all clients (based on seconds).

• "WaitingTime_cv()":
Gets the coefficient of variation of the waiting times over all clients.

• "WaitingTime_scv()":
Gets the squared coefficient of variation of the waiting times over all clients.

• "WaitingTime_sk()":
Gets the skewness of the waiting times over all clients.

• "WaitingTime_kurt()":
Gets the excess kurtosis of the waiting times over all clients.

• "WaitingTime_histAll(time)":
Gets the fraction of clients for which the waiting time was time seconds.

• "WaitingTime_histAll(timeA;timeB)":
Gets the fraction of clients for which the waiting time was more than timeA and at most timeB seconds.

13.6.3 Waiting times for a specific client type

• "WaitingTime_sum(id)" or "WaitingTime_gesamt(id)" or "WaitingTime_summe(id)": Gets the sum
of the waiting times of the clients, whos name appears at the source or the type assignment id (in
seconds). (alternative parameterization possible)

• "WaitingTime_avg(id)" or "WaitingTime_average(id)" or "WaitingTime_Mittelwert(id)":
Gets the average waiting time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "WaitingTime_median(id)":
Gets the median of the waiting times of the clients, whos name appears at the source or the type
assignment id (in seconds). (alternative parameterization possible)

13.7 Transfer times 49

• "WaitingTime_quantil(p;id)":
Gets the quantil for the probability p of the waiting times of the clients, whos name appears at the
source or the type assignment id (in seconds).

• "WaitingTime_min(id)" or "WaitingTime_Minimum(id)":
Gets the minimum waiting time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "WaitingTime_max(id)" or "WaitingTime_Maximum(id)":
Gets the maximum waiting time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "WaitingTime_var(id)" or "WaitingTime_Varianz(id)":
Gets the variation of the waiting times of the clients, whos name appears at the source or the type
assignment id (based on seconds). (alternative parameterization possible)

• "WaitingTime_sd(id)" or "WaitingTime_Standardabweichung(id)":
Gets the standard deviation of the waiting times of the clients, whos name appears at the source or
the type assignment id (based on seconds). (alternative parameterization possible)

• "WaitingTime_cv(id)":
Gets the coefficient of variation of the waiting times of the clients, whos name appears at the source
or the type assignment id. (alternative parameterization possible)

• "WaitingTime_scv(id)":
Gets the squared coefficient of variation of the waiting times of the clients, whos name appears at the
source or the type assignment id. (alternative parameterization possible)

• "WaitingTime_sk(id)":
Gets the skewness of the waiting times of the clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "WaitingTime_kurt(id)":
Gets the excess kurtosis of the waiting times of the clients, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

13.7 Transfer times

13.7.1 Transfer times at a station

• "TransferTime_sum(id)" or "TransferTime_gesamt(id)" or "TransferTime_summe(id)":
Gets the sum of the transfer times at the station id (in seconds). (alternative parameterization possible)

• "TransferTime_avg(id)" or "TransferTime_average(id)" or
"TransferTime_Mittelwert(id)":
Gets the average transfer time of the clients at station id (in seconds).

• "TransferTime_median(id)":
Gets the median of the transfer times of the clients at station id (in seconds).

• "TransferTime_quantil(p;id)":
Gets the quantil for the probability p of the transfer times of the clients at station id (in seconds).

• "TransferTime_min(id)" or "TransferTime_Minimum(id)":
Gets the minimum transfer time of the clients at station id (in seconds).

• "TransferTime_max(id)" or "TransferTime_Maximum(id)":
Gets the maximum transfer time of the clients at station id (in seconds).

50 13 Accessing model properties

• "TransferTime_var(id)" or "TransferTime_Varianz(id)":
Gets the variation of the transfer times of the clients at station id (based on seconds).

• "TransferTime_sd(id)" or "TransferTime_Standardabweichung(id)":
Gets the standard deviation of the transfer times of the clients at station id (based on seconds).

• "TransferTime_cv(id)":
Gets the coefficient of variation of the transfer times of the clients at station id.

• "TransferTime_scv(id)":
Gets the squared coefficient of variation of the transfer times of the clients at station id.

• "TransferTime_sk(id)":
Gets the skewness of the transfer times of the clients at station id.

• "TransferTime_kurt(id)":
Gets the excess kurtosis of the transfer times of the clients at station id.

• "TransferTime_hist(id;time)":
Gets the fraction of clients for which the transfer time at stations id was time seconds.

• "TransferTime_hist(id;timeA;timeB)":
Gets the fraction of clients for which the transfer time at stations id was more than timeA and at
most timeB seconds.

13.7.2 Transfer times over all client types

• "TransferTime_avg()" or "TransferTime_average()" or "TransferTime_Mittelwert()":
Get the average waiting time over all clients (in seconds).

• "TransferTime_median()":
Get the median of the transfer times over all clients (in seconds).

• "TransferTime_quantil(p)":
Gets the quantil for the probability p of the transfer times over all clients (in seconds).

• "TransferTime_min()" or "TransferTime_Minimum()":
Get the minimum transfer time over all clients (in seconds).

• "TransferTime_max()" or "TransferTime_Maximum()":
Get the maximum transfer time over all clients (in seconds).

• "TransferTime_var()" or "TransferTime_Varianz()":
Gets the variation of the transfer times over all clients (based on seconds).

• "TransferTime_sd()" or "TransferTime_Standardabweichung()":
Gets the standard deviation of the transfer times over all clients (based on seconds).

• "TransferTime_cv()":
Gets the coefficient of variation of the transfer times over all clients.

• "TransferTime_scv()":
Gets the squared coefficient of variation of the transfer times over all clients.

• "TransferTime_sk()":
Gets the skewness of the transfer times over all clients.

• "TransferTime_kurt()":
Gets the excess kurtosis of the transfer times over all clients.

• "TransferTime_histAll(time)":
Gets the fraction of clients for which the transfer time was time seconds.

13.7 Transfer times 51

• "TransferTime_histAll(timeA;timeB)":
Gets the fraction of clients for which the transfer time was more than timeA and at most timeB
seconds.

13.7.3 Transfer times for a specific client type

• "TransferTime_sum(id)" or "TransferTime_gesamt(id)" or "TransferTime_summe(id)":
Gets the sum of the transfer times of the clients, whos name appears at the source or the type
assignment id (in seconds). (alternative parameterization possible)

• "TransferTime_avg(id)" or "TransferTime_average(id)" or
"TransferTime_Mittelwert(id)":
Gets the average transfer time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "TransferTime_median(id)":
Gets the median of the transfer times of the clients, whos name appears at the source or the type
assignment id (in seconds). (alternative parameterization possible)

• "TransferTime_quantil(p;id)":
Gets the quantil for the probability p of the transfer times of the clients, whos name appears at the
source or the type assignment id (in seconds).

• "TransferTime_min(id)" or "TransferTime_Minimum(id)":
Gets the minimum transfer time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "TransferTime_max(id)" or "TransferTime_Maximum(id)":
Gets the maximum transfer time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "TransferTime_var(id)" or "TransferTime_Varianz(id)":
Gets the variation of the transfer times of the clients, whos name appears at the source or the type
assignment id (based on seconds). (alternative parameterization possible)

• "TransferTime_sd(id)" or "TransferTime_Standardabweichung(id)":
Gets the standard deviation of the transfer times of the clients, whos name appears at the source or
the type assignment id (based on seconds). (alternative parameterization possible)

• "TransferTime_cv(id)":
Gets the coefficient of variation of the transfer times of the clients, whos name appears at the source
or the type assignment id. (alternative parameterization possible)

• "TransferTime_scv(id)":
Gets the squared coefficient of variation of the transfer times of the clients, whos name appears at the
source or the type assignment id. (alternative parameterization possible)

• "TransferTime_sk(id)":
Gets the skewness of the transfer times of the clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "TransferTime_kurt(id)":
Gets the excess kurtosis of the transfer times of the clients, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

52 13 Accessing model properties

13.8 Process times

13.8.1 Process times at a station

• "ProcessTime_sum(id)" or "ProcessTime_gesamt(id)" or "ProcessTime_summe(id)":
Gets the sum of the process times at the station id (in seconds).

• "ProcessTime_avg(id)" or "ProcessTime_average(id)" or "ProcessTime_Mittelwert(id)":
Gets the average process time of the clients at station id (in seconds).

• "ProcessTime_median(id)":
Gets the median of the process times of the clients at station id (in seconds).

• "ProcessTime_quantil(p;id)":
Gets the quantil for the probability p of the process times of the clients at station id (in seconds).

• "ProcessTime_min(id)" or "ProcessTime_Minimum(id)":
Gets the minimum process time of the clients at station id (in seconds).

• "ProcessTime_max(id)" or "ProcessTime_Maximum(id)":
Gets the maximum process time of the clients at station id (in seconds).

• "ProcessTime_var(id)" or "ProcessTime_Varianz(id)":
Gets the variation of the process times of the clients at station id (based on seconds).

• "ProcessTime_sd(id)" or "ProcessTime_Standardabweichung(id)":
Gets the standard deviation of the process times of the clients at station id (based on seconds).

• "ProcessTime_cv(id)":
Gets the coefficient of variation of the process times of the clients at station id.

• "ProcessTime_scv(id)":
Gets the squared coefficient of variation of the process times of the clients at station id.

• "ProcessTime_sk(id)":
Gets the skewness of the process times of the clients at station id.

• "ProcessTime_kurt(id)":
Gets the excess kurtosis of the process times of the clients at station id.

• "ProcessTime_hist(id;time)":
Gets the fraction of clients for which the process time at stations id was time seconds.

• "ProcessTime_hist(id;timeA;timeB)":
Gets the fraction of clients for which the process time at stations id was more than timeA and at most
timeB seconds.

13.8.2 Process times over all client types

• "ProcessTime_avg()" or "ProcessTime_average()" or "ProcessTime_Mittelwert()":
Get the average process time over all clients (in seconds).

• "ProcessTime_median()":
Get the median of the process times over all clients (in seconds).

• "ProcessTime_quantil(p)":
Gets the quantil for the probability p of the process times over all clients (in seconds).

• "ProcessTime_min()" or "ProcessTime_Minimum()":
Get the minimum process time over all clients (in seconds).

13.8 Process times 53

• "ProcessTime_max()" or "ProcessTime_Maximum()":
Get the maximum process time over all clients (in seconds).

• "ProcessTime_var()" or "ProcessTime_Varianz()":
Gets the variation of the process times over all clients (based on seconds).

• "ProcessTime_sd()" or "ProcessTime_Standardabweichung()":
Gets the standard deviation of the process times over all clients (based on seconds).

• "ProcessTime_cv()":
Gets the coefficient of variation of the process times over all clients.

• "ProcessTime_scv()":
Gets the squared coefficient of variation of the process times over all clients.

• "ProcessTime_sk()":
Gets the skewness of the process times over all clients.

• "ProcessTime_kurt()":
Gets the excess kurtosis of the process times over all clients.

• "ProcessTime_histAll(time)":
Gets the fraction of clients for which the process time was time seconds.

• "ProcessTime_histAll(timeA;timeB)":
Gets the fraction of clients for which the process time was more than timeA and at most timeB seconds.

13.8.3 Process times for a specific client type

• "ProcessTime_sum(id)" or "ProcessTime_gesamt(id)" or "ProcessTime_summe(id)":
Gets the sum of the process times of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "ProcessTime_avg(id)" or "ProcessTime_average(id)" or "ProcessTime_Mittelwert(id)":
Gets the average process time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "ProcessTime_median(id)":
Gets the median of the process times of the clients, whos name appears at the source or the type
assignment id (in seconds). (alternative parameterization possible)

• "ProcessTime_quantil(p;id)":
Gets the quantil for the probability p of the process times of the clients, whos name appears at the
source or the type assignment id (in seconds).

• "ProcessTime_min(id)" or "ProcessTime_Minimum(id)":
Gets the minimum process time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "ProcessTime_max(id)" or "ProcessTime_Maximum(id)":
Gets the maximum process time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "ProcessTime_var(id)" or "ProcessTime_Varianz(id)":
Gets the variation of the process times of the clients, whos name appears at the source or the type
assignment id (based on seconds). (alternative parameterization possible)

• "ProcessTime_sd(id)" or "ProcessTime_Standardabweichung(id)":
Gets the standard deviation of the process times of the clients, whos name appears at the source or
the type assignment id (based on seconds). (alternative parameterization possible)

54 13 Accessing model properties

• "ProcessTime_cv(id)":
Gets the coefficient of variation of the process times of the clients, whos name appears at the source
or the type assignment id. (alternative parameterization possible)

• "ProcessTime_scv(id)":
Gets the squared coefficient of variation of the process times of the clients, whos name appears at the
source or the type assignment id. (alternative parameterization possible)

• "ProcessTime_sk(id)":
Gets the skewness of the process times of the clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "ProcessTime_kurt(id)":
Gets the excess kurtosis of the process times of the clients, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

13.9 Residence times

13.9.1 Residence times at a station

• "ResidenceTime_sum(id)" or "ResidenceTime_gesamt(id)" or "ResidenceTime_summe(id)":
Gets the sum of the residence times at the station id (in seconds).

• "ResidenceTime_avg(id)" or "ResidenceTime_average(id)" or
"ResidenceTime_Mittelwert(id)":
Gets the average residence time of the clients at station id (in seconds).

• "ResidenceTime_median(id)":
Gets the median of the residence times of the clients at station id (in seconds).

• "ResidenceTime_quantil(p;id)":
Gets the quantil for the probability p of the residence times of the clients at station id (in seconds).

• "ResidenceTime_min(id)" or "ResidenceTime_Minimum(id)":
Gets the minimum residence time of the clients at station id (in seconds).

• "ResidenceTime_max(id)" or "ResidenceTime_Maximum(id)":
Gets the maximum residence time of the clients at station id (in seconds).

• "ResidenceTime_var(id)" or "ResidenceTime_Varianz(id)":
Gets the variation of the residence times of the clients at station id (based on seconds).

• "ResidenceTime_sd(id)" or "ResidenceTime_Standardabweichung(id)":
Gets the standard deviation of the residence times of the clients at station id (based on seconds).

• "ResidenceTime_cv(id)":
Gets the coefficient of variation of the residence times of the clients at station id.

• "ResidenceTime_scv(id)":
Gets the squared coefficient of variation of the residence times of the clients at station id.

• "ResidenceTime_sk(id)":
Gets the skewness of the residence times of the clients at station id.

• "ResidenceTime_kurt(id)":
Gets the excess kurtosis of the residence times of the clients at station id.

• "ResidenceTime_hist(id;time)":
Gets the fraction of clients for which the residence time at stations id was time seconds.

13.9 Residence times 55

• "ResidenceTime_hist(id;timeA;timeB)":
Gets the fraction of clients for which the residence time at stations id was more than timeA and at
most timeB seconds.

13.9.2 Residence times over all client types

• "ResidenceTime_avg()" or "ResidenceTime_average()" or "ResidenceTime_Mittelwert()":
Get the average residence time over all clients (in seconds).

• "ResidenceTime_median()":
Get the median of the residence times over all clients (in seconds).

• "ResidenceTime_quantil(p)":
Gets the quantil for the probability p of the residence times over all clients (in seconds).

• "ResidenceTime_min()" or "ResidenceTime_Minimum()":
Get the minimum residence time over all clients (in seconds).

• "ResidenceTime_max()" or "ResidenceTime_Maximum()":
Get the maximum residence time over all clients (in seconds).

• "ResidenceTime_var()" or "ResidenceTime_Varianz()":
Gets the variation of the residence times over all clients (based on seconds).

• "ResidenceTime_sd()" or "ResidenceTime_Standardabweichung()":
Gets the standard deviation of the residence times over all clients (based on seconds).

• "ResidenceTime_cv()":
Gets the coefficient of variation of the residence times over all clients.

• "ResidenceTime_scv()":
Gets the squared coefficient of variation of the residence times over all clients.

• "ResidenceTime_sk()":
Gets the skewness of the residence times over all clients.

• "ResidenceTime_kurt()":
Gets the excess kurtosis of the residence times over all clients.

• "ResidenceTime_histAll(time)":
Gets the fraction of clients for which the residence time was time seconds.

• "ResidenceTime_histAll(timeA;timeB)":
Gets the fraction of clients for which the residence time was more than timeA and at most timeB
seconds.

13.9.3 Residence times for a specific client type

• "ResidenceTime_sum(id)" or "ResidenceTime_gesamt(id)" or "ResidenceTime_summe(id)": Gets
the sum of the residence times of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

• "ResidenceTime_avg(id)" or "ResidenceTime_average(id)" or
"ResidenceTime_Mittelwert(id)":
Gets the average residence time of the clients, whos name appears at the source or the type assignment
id (in seconds). (alternative parameterization possible)

56 13 Accessing model properties

• "ResidenceTime_median(id)":
Gets the median of the residence times of the clients, whos name appears at the source or the type
assignment id (in seconds). (alternative parameterization possible)

• "ResidenceTime_quantil(p;id)":
Gets the quantil for the probability p of the residence times of the clients, whos name appears at the
source or the type assignment id (in seconds).

• "ResidenceTime_min(id)" or "ResidenceTime_Minimum(id)":
Gets the minimum residence time of the clients, whos name appears at the source or the type assign-
ment id (in seconds). (alternative parameterization possible)

• "ResidenceTime_max(id)" or "ResidenceTime_Maximum(id)":
Gets the maximum residence time of the clients, whos name appears at the source or the type assign-
ment id (in seconds). (alternative parameterization possible)

• "ResidenceTime_var(id)" or "ResidenceTime_Varianz(id)":
Gets the variation of the residence times of the clients, whos name appears at the source or the type
assignment id (based on seconds). (alternative parameterization possible)

• "ResidenceTime_sd(id)" or "ResidenceTime_Standardabweichung(id)":
Gets the standard deviation of the residence times of the clients, whos name appears at the source or
the type assignment id (based on seconds). (alternative parameterization possible)

• "ResidenceTime_cv(id)":
Gets the coefficient of variation of the residence times of the clients, whos name appears at the source
or the type assignment id. (alternative parameterization possible)

• "ResidenceTime_scv(id)":
Gets the squared coefficient of variation of the residence times of the clients, whos name appears at
the source or the type assignment id. (alternative parameterization possible)

• "ResidenceTime_sk(id)":
Gets the skewness of the residence times of the clients, whos name appears at the source or the type
assignment id. (alternative parameterization possible)

• "ResidenceTime_kurt(id)":
Gets the excess kurtosis of the residence times of the clients, whos name appears at the source or the
type assignment id. (alternative parameterization possible)

13.9.4 Setup times at a station

Attention: The setup times are also recorded as part of the service times.

• "SetupTime_avg(id)" or "SetupTime_average(id)" or
"SetupTime_Mittelwert(id)":
Gets the average setup time of the clients at station id (in seconds).

• "SetupTime_median(id)":
Gets the median of the setup times of the clients at station id (in seconds).

• "SetupTime_quantil(p;id)":
Gets the quantil for the probability p of the setup times of the clients at station id (in seconds).

• "SetupTime_min(id)" or "SetupTime_Minimum(id)":
Gets the minimum setup time of the clients at station id (in seconds).

• "SetupTime_max(id)" or "SetupTime_Maximum(id)":
Gets the maximum setup time of the clients at station id (in seconds).

13.11 Utilization of the resources 57

• "SetupTime_var(id)" or "SetupTime_Varianz(id)":
Gets the variation of the setup times of the clients at station id (based on seconds).

• "SetupTime_sd(id)" or "SetupTime_Standardabweichung(id)":
Gets the standard deviation of the setup times of the clients at station id (based on seconds).

• "SetupTime_cv(id)":
Gets the coefficient of variation of the setup times of the clients at station id.

• "SetupTime_scv(id)":
Gets the squared coefficient of variation of the setup times of the clients at station id.

• "SetupTime_sk(id)":
Gets the skewness of the setup times of the clients at station id.

• "SetupTime_kurt(id)":
Gets the excess kurtosis of the setup times of the clients at station id.

• "SetupTime_hist(id;time)":
Gets the fraction of values for which the setup time at stations id was time seconds.

• "SetupTime_hist(id;timeA;timeB)":
Gets the fraction of values for which the setup time at stations id was more than timeA and at most
timeB seconds.

13.10 Flow factor

13.10.1 Flow factor at a station

"FlowFactor(id)":
Returns the flow factor at station id.

13.10.2 Flow factor over all client types

"FlowFactor()":
Returns the flow factor over all clients.

13.10.3 Flow factor for a specific client type

"FlowFactor(id)":
Returns the flow factor of the clients, whos name appears at the source or the type assignment id (in
seconds). (alternative parameterization possible)

13.11 Utilization of the resources

13.11.1 Utilization of a resource

• "resource_count(id)" or "resource_capacity(id)" or "MR(id)":
Gets the number of currently existing operators in the specified resource.

• "resource_count_average(id)" or "resource_capacity_average(id)" or "MR_average(id)":
Gets the number of the on average existing operators in the specified resource.

58 13 Accessing model properties

• "resource_down(id)":
Gets the number of operators that are currently in down time in the specified resource.

• "resource(id)" or "utilization(id)" or "NR(id)":
Gets the number of currently busy operators in the specified resource.

• "resource_avg(id)" or "resource_average(id)" or "resource_Mittelwert(id)" or
"utilization_avg(id)" or "utilization_average(id)" or "utilization_Mittelwert(id)":
Gets the average number of busy operators in the specified resource.

• "resource_median(id)" or "utilization_median(id)":
Gets the median of the number of busy operators in the specified resource.

• "resource_quantil(id;p)" or "utilization_quantil(id;p)":
Gets the quantil for the number of busy operators in the specified resource.

• "resource_min(id)" or "resource_Minimum(id)" or "utilization_min(id)" or
"utilization_Minimum(id)":
Gets the minimum number of busy operators in the specified resource.

• "resource_max(id)" or "resource_Maximum(id)" or "utilization_max(id)" or
"utilization_Maximum(id)":
Gets the maximum number of busy operators in the specified resource.

• "resource_var(id)" or "resource_Varianz(id)" or "utilization_var(id)" or
"utilization_Varianz(id)":
Gets the variation of the number of busy operators in the specified resource.

• "resource_sd(id)" or "resource_Standardabweichung(id)" or "utilization_sd(id)" or
"utilization_Standardabweichung(id)":
Gets the standard deviation of the number of busy operators in the specified resource.

• "resource_cv(id)" or "utilization_cv(id)":
Gets the coefficient of variation of the number of busy operators in the specified resource.

• "resource_scv(id)" or "utilization_scv(id)":
Gets the squared coefficient of variation of the number of busy operators in the specified resource.

• "resource_sk(id)" or "utilization_sk(id)":
Gets the skewness of the number of busy operators in the specified resource.

• "resource_kurt(id)" or "utilization_kurt(id)":
Gets the excess kurtosis of the number of busy operators in the specified resource.

• "resource_hist(id;state)" or "utilization_hist(id;state)":
Gets the fraction of time, at which state of the operators in the specified resource have been busy.

• "resource_hist(id;stateA;stateB)" or "utilization_hist(id;stateA;stateB)":
Gets the fraction of time, at which more than stateA and at most stateB of the operators in the
specified resource have been busy.

13.11.2 Utilization of all resource together

• "resource_count()" or "resource_capacity()" or "MR()":
Gets the number of currently existing operators in all resources.

• "resource_count_average()" or "resource_capacity_average()" or "MR_average()":
Gets the number of the on average existing operators in all resources.

• "resource_down()":
Gets the number of operators that are currently in down time in all resources.

13.12 Utilization of the transporters 59

• "resource()" or "utilization()" or "NR()":
Gets the number of currently busy operators in all resources.

• "resource_avg()" or "resource_average()" or "resource_Mittelwert()" or
"utilization_avg()" or "utilization_average()" or "utilization_Mittelwert()":
Gets the average number of busy operators in all resources.

• "resource_min()" or "resource_Minimum()" or "utilization_min()" or
"utilization_Minimum()":
Gets the minimum number of busy operators in all resources.

• "resource_max()" or "resource_Maximum()" or "utilization_max()" or
"utilization_Maximum()":
Gets the maximum number of busy operators in all resources.

13.12 Utilization of the transporters

13.12.1 Utilization of a transporter group

• "transporter_count(id)":
Gets the number of transporter in the specified transporter group.

• "transporter_capacity(id)":
Gets the number of clients a transporter in the specified transporter group can carry.

• "transporter_down(id)":
Gets the number of transporters that are currently in down time in the specified transporter group.

• "transporter(id)" or "transporter_utilization(id)":
Gets the number of currently busy transporters in the specified transporter group.

• "transporter_avg(id)" or "transporter_average(id)" or "transporter_Mittelwert(id)" or
"transporter_utilization_avg(id)" or "transporter_utilization_average(id)" or
"transporter_utilization_Mittelwert(id)":
Gets the average number of busy transporters in the specified transporter group.

• "transporter_median(id)" oder "transporter_utilization_median(id)":
Gets the median of the number of busy operators in the specified resource.

• "transporter_quantil(id;p)" oder "transporter_utilization_quantil(id;p)":
Gets the quantil for the number of busy operators in the specified resource.

• "transporter_min(id)" or "transporter_Minimum(id)" or "transporter_utilization_min(id)"
or "transporter_utilization_Minimum(id)":
Gets the minimum number of busy transporters in the specified transporter group.

• "transporter_max(id)" or "transporter_Maximum(id)" or "transporter_utilization_max(id)"
or "transporter_utilization_Maximum(id)":
Gets the maximum number of busy transporters in the specified transporter group.

• "transporter_var(id)" or "transporter_Varianz(id)" or "transporter_utilization_var(id)"
or "transporter_utilization_Varianz(id)":
Gets the variation of the number of busy transporters in the specified transporter group.

• "transporter_sd(id)" or "transporter_Standardabweichung(id)" or
"transporter_utilization_sd(id)" or "transporter_utilization_Standardabweichung(id)":
Gets the standard deviation of the number of busy transporters in the specified transporter group.

60 13 Accessing model properties

• "transporter_cv(id)" or "transporter_utilization_cv(id)":
Gets the coefficient of variation of the number of busy transporters in the specified transporter group.

• "transporter_scv(id)" or "transporter_utilization_scv(id)":
Gets the squared coefficient of variation of the number of busy transporters in the specified transporter
group.

• "transporter_sk(id)" or "transporter_utilization_sk(id)":
Gets the skewness of the number of busy transporters in the specified transporter group.

• "transporter_kurt(id)" or "transporter_utilization_kurt(id)":
Gets the excess kurtosis of the number of busy transporters in the specified transporter group.

• "transporter_hist(id;state)" or "transporter_utilization_hist(id;state)":
Gets the fraction of time, at which state of the transporters in the specified transporter group have
been busy.

• "transporter_hist(id;stateA;stateB)" or
"transporter_utilization_hist(id;stateA;stateB)":
Gets the fraction of time, at which more than stateA and at most stateB of the transporters in the
specified transporter group have been busy.

13.12.2 Utilization of all transporters together

• "transporter_count()":
Gets the number of currently existing transporters in all transporter groups.

• "transporter_down()":
Gets the number of transporters that are currently in down time in all transporter groups.

• "transporter()" or "transporter_utilization()":
Gets the number of currently busy transporters in all transporter groups.

• "transporter_avg()" or "transporter_average()" or "transporter_Mittelwert()" or
"transporter_utilization_avg()" or "transporter_utilization_average()" or
"transporter_utilization_Mittelwert()":
Gets the average number of busy transporters in all transporter groups.

• "transporter_min()" or "transporter_Minimum()" or "transporter_utilization_min()" or
"transporter_utilization_Minimum()":
Gets the minimum number of busy transporters in all transporter groups.

• "transporter_max()" or "transporter_Maximum()" or "transporter_utilization_max()" or
"transporter_utilization_Maximum()":
Gets the maximum number of busy transporters in all transporter groups.

13.13 Accessing the Statistics stations records

• "Statistics(id;nr)":
Gets the current value of record nr (1 based) at Statistics station id.

• "Statistics_avg(id;nr)" or "Statistics_average(id;nr)":
Gets the average value of record nr (1 based) at Statistics station id.

• "Statistics_median(id;nr)":

13.15 Accessing the client object specific data fields 61

• "Statistics_quantil(id;nr;p)":
Gets the quantil for the probability p of the value of record nr (1 based) at Statistics station id. (This
command is not available for continuous-time user-defined statistics entries).

• or "Statistics_min(id;nr)" or "Statistics_Minimum(id;nr)":
Gets the minimum value of record nr (1 based) at Statistics station id.

• "Statistics_max(id;nr)" or "Statistics_Maximum(id;nr)":
Gets the maximum value of record nr (1 based) at Statistics station id.

• "Statistics_var(id;nr)":
Gets the variance of record nr (1 based) at Statistics station id.

• "Statistics_std(id;nr)":
Gets the standard deviation of record nr (1 based) at Statistics station id.

• "Statistics_cv(id;nr)":
Gets the coefficient of variation of record nr (1 based) at Statistics station id.

• "Statistics_scv(id;nr)":
Gets the squared coefficient of variation of record nr (1 based) at Statistics station id.

• "Statistics_sk(id;nr)":
Gets the skewness of record nr (1 based) at Statistics station id.

• "Statistics_kurt(id;nr)":
Gets the excess kurtosis of record nr (1 based) at Statistics station id.

• "Statistics_hist(id;nr;state)":
Get the part in which the value of record nr (1 based) at Statistics station id was state. (This
command is not available for continuous-time user-defined statistics entries).

• "Statistics_hist(id;nr;stateA;stateB)":
Get the part in which the value of record nr (1 based) at Statistics station id was bigger than stateA
and smaller or equal stateB. (This command is not available for continuous-time user-defined statistics
entries).

13.14 Accessing analog values

• "AnalogValue(id)":
Gets the current value of the "Analog value" element or the "Tank" element id.

• "AnalogRate(id)":
Gets the current change rate of the value of the "Analog value" element id.

• "ValveMaximumFlow(id;nr)":
Gets the current maximum flow at valve nr (1 based) at "Tank" element id.

13.15 Accessing the client object specific data fields

• "WarmUpKunde()" or "WarmUpClient()" or "isWarmUpClient()":
Gets 0 or 1 depending on whether the client was generated during the warm-up phase (1) or not (0).

• "KundeInStatistik()" or "ClientInStatistics()" or "isClientInStatistics()":
Gets 0 or 1 depending on whether the client is to be recorded in the statistics (1) or nor (0). Additionally
the client has to be generated after the warm-up phase to be actually recorded.

62 13 Accessing model properties

• "KundeNummer()" or "ClientNumber()":
Returns the 1-based consecutive number of the current client. If using multiple simulation threads this
number is thread-local.

• "KundeQuelleID()" or "ClientSourceID()":
Returns the ID of the station where the current client was created or where it was assigned its current
type.

• "ClientData(index)":
Gets the data field at position index from the current client object.
The "Variable" elements can be used to write to these fields.

• "Alternative()":
Indicates which operator alternative has been chosen at the last process station the client has passed
to serve the client. If the client has not passed any process station yet, the function will return 0.
Otherwise a value of 1 or larger will be returned.

• "PreviousStation()":
Gets the ID of the station where the client was before he entered the current station.

• "CurrentWaitingTime()":
Gets the waiting time of the current client at the current station.

• "ClientBatchSize()":
If the client object is a temporary batch, the number of clients contained in the batch is returned.
Otherwise, 0 is returned.

• "LastWaitingTimeTolerance()":
Returns the last waiting time tolerance calculated for this client at a process station. If a waiting time
tolerance has never been calculated for the client, the function returns 0.

13.16 Accessing the costs

• "costs_waiting_sum(id)":
Gets the waiting time costs of the clients, whos name appears at the source or the type assignment id.

• "costs_waiting_avg(id)" or "costs_waiting_average(id)" or
"Kosten_WaitingTime_Mittelwert(id)":
Gets the average waiting time costs of the clients, whos name appears at the source or the type
assignment id.

• "costs_waiting_sum()" or "Kosten_WaitingTime_Summe()":
Gets the sum of the waiting time costs of all clients.

• "costs_waiting_avg()" or "costs_waiting_average()":
Gets the average waiting time costs of all clients.

• "costs_waiting()":
Gets the waiting time costs of the current client.

• "costs_transfer_sum(id)":
Gets the transfer time costs of the clients, whos name appears at the source or the type assignment
id.

• "costs_transfer_avg(id)" or "costs_transfer_average(id)":
Gets the average transfer time costs of the clients, whos name appears at the source or the type
assignment id.

13.16 Accessing the costs 63

• "costs_transfer_sum()":
Gets the sum of the transfer time costs of all clients.

• "costs_transfer_avg()" or "costs_transfer_average()":
Gets the average transfer time costs of all clients.

• "costs_transfer()":
Gets the transfer time costs of the current client.

• "costs_process_sum(id)":
Gets the process time costs of the clients, whos name appears at the source or the type assignment id.

• "costs_process_avg(id)" or "costs_process_average(id)":
Gets the average process time costs of the clients, whos name appears at the source or the type
assignment id.

• "costs_process_sum()":
Gets the sum of the process time costs of all clients.

• "costs_process_avg()" or "costs_process_average()":
Gets the average process time costs of all clients.

• "costs_process()":
Gets the process time costs of the current client.

• "costs(id)":
Provides the station costs, which so far have occurred at station id.

• "costs()":
Provides the station costs, which so far have occurred in total at all stations.

• "costs_resource(id)":
Returns the costs incurred by the specified resource so far.

• "costs_resource()":
Returns the costs incurred by all resources so far.

Chapter 14

Comparison

• "a == b":
Gets true, if a has the same value as b.

• "a != b" or "a <> b":
Gets true, if a and b have different values.

• "a < b":
Gets true, if a is less than b.

• "a <= b" or "a =< b":
Gets true, if a is less or equal to b.

• "a > b":
Gets true, if a is larger than b.

• "a >= b" or "a => b":
Gets true, if a is larger or equal to b.

• "A || B":
Gets true, if A or B (or both) are true.

• "A && B":
Gets true, if A and B are both true.

• "!(A)":
Gets true, if A is not true.

The lowercase characters a and b are placeholders for calculation expressions like "WIP()". The capital
letters A and B stand for comparisons like "WIP()<5".

14.1 Comparison function

Additionally normal calculation commands an "If" function is available. This functions expects an odd
number of parameters:
"If(condition1;value1;condition2;value2;...;valueElse)"
If condition1> 0 the function returns value1. Otherwise condition2> 0 is tested and if its fulfilled
value2 is returned and so on. If non of the conditions is fulfilled the function returns valueElse.

65

Part II

Javascript commands reference
Scripts can be used at different points in the simulator. The script language is Javascript or Java.
In this section the additional Javascript commands which are available when using Javascript to access
the simulation or statistics data and to output filtered data are presented.

Chapter 15

Statistics object

The "Statistics" object offers read access to the xml elements which are the base of the statistics data.
The "Statistics" object is only available after the simulation while filtering the results while and when
running a parameter series script. The following methods are in this object available:

15.1 Definition of the output format

• "Statistics.setFormat("Format")":
This command allows to setup the format that is used in "Statistics.xml" for outputing numbers
as strings. You can specify whether to use a floating point notation or percent notation or interpreting
the value as a time. As default floating point notation is used.

– "System": Using floating point notation for numbers and percent values.
–
– "Fraction": Using floating point notation for numbers (0.375 for example).
– "Percent": Using percent notation for numbers (35.7% for example).
– "Time": Interpreting numbers as times (00:03:25,87 for example).
– "Number": Interpreting time values as normal numbers (format defined by Percent or Fraction).

• "Statistics.setSeparator("Format")":
This command allows to select the separator to be used when printing out distributions of measured
values.

– "Semicolon": Semicolons as separators
– "Line": Line break as separators
– "Tabs": Tabulators as separators

15.2 Accessing statistics xml data

• "Statistics.xml("Path")":
Loads the xml field which is specified by the parameter and returns the data in the format defined by
"Statistics.setFormat" and "Statistics.setSeparator" as a string.

69

70 15 Statistics object

Example:
var name=Statistics.xml("Model->ModelName")

• "Statistics.xmlNumber("Path")":
Loads the xml field which is specified by the parameter and returns the value as a number. If the field
cannot be interpreted as a number, a string containing an error message will be returned.

• "Statistics.xmlArray("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
values as an array of numbers. If the field cannot be interpreted as a distribution, a string containing
an error message will be returned.
Example:
Statistics.xmlArray("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.xmlSum("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
sum of all values as a number. If the field cannot be interpreted as a distribution, a string containing
an error message will be returned.
Example:
Statistics.xmlSum("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.xmlMean("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
mean of values as a number. If the field cannot be interpreted as a distribution, a string containing an
error message will be returned.
Example:
Statistics.xmlMean("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.xmlSD("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
standard deviation of values as a number. If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
Statistics.xmlSD("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.xmlCV("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
coefficient of variation of values as a number. If the field cannot be interpreted as a distribution, a
string containing an error message will be returned.
Example:
Statistics.xmlCV("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.xmlMedian("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
median of values as a number. If the field cannot be interpreted as a distribution, a string containing
an error message will be returned.

15.4 Accessing station data 71

Example:
Statistics.xmlMedian("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.xmlMode("Path")":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns
the mode value of values as a number. If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
Statistics.xmlMode("StatisticsProcessTimesClients->ClientType[Type=\"ClientsA\"]->
[Distribution]")

• "Statistics.translate("de")":
Translates the statistics data to English ("en") or German ("de") so the preferred xml tag names can
be used independent of the language setting under which the statistics file was generated.

15.3 Saving the statistics data to files

• "Statistics.save("FileName")":
Saves the entry statistics data under the next available file name in the given folder.
This function is only available in the Run script panel.

• "Statistics.saveNext("FolderName")":
Saves the entry statistics data under the next available file name in the given folder.
This function is only available in the Run script panel.

• "Statistics.filter("FileName")":
Applies the selected script on the statistics data and returns the results.
This function is only available in the Run script panel.

• "Statistics.cancel()":
Sets the cancel status. (When output is canceled to further file output will be performed.)

15.4 Accessing station data

• "Statistics.getStationID("StationName")":
Gets the ID of a station based on its name. If there is no station with a matching name, the function
will return -1.

Chapter 16

System object

The "System" object allows to access some general program functions. The "System" object is only
available after the simulation while filtering the results or when running parameter series scripts. The

Chapter 17

Simulation object

The "Simulation" object allows to access the model data while simulation is running. It is not available
for filtering the results after simulation has terminated. The following methods are available in this object:

17.1 Base functions

• "Simulation.time()":
Gets the current time in the simulation as a seconds numerical value.

• "Simulation.calc("Expression")":
Calculates the expression passed as a string by means of the term evaluation function, which is also
used in various other places in the program (see part I), and returns the result as a number. If the
expression can not be calculated, an error message is returned as a string. The term evaluation function
allows access to all known probability distributions, the Erlang C calculator, etc.

• "Simulation.getInput("http://Adresse",-1)":
Loads a numerical value via the specified address and returns it. If no value could be loaded, the error
value specified in the second parameter is returned.

• "Simulation.execute("program.exe")":
Executes an external command and returns immediately. Returns true, if the program could be started.
Executing external programs by scripts is disabled by default. If can be activated in the program
settings dialog.

• "Simulation.executeAndReturnOutput("program.exe")":
Executes an external command and returns the output. Executing external programs by scripts is
disabled by default. If can be activated in the program settings dialog.

• "Simulation.executeAndWait("program.exe")":
Executes an external command, waits for completion and returns the return code of the program. In
case of an error -1 will be returned. Executing external programs by scripts is disabled by default. If
can be activated in the program settings dialog.

• "Simulation.isWarmUp()":
Gets true of false depending if the simulation is in the warm-up phase.

• "Simulation.getMapLocal()":
Returns a station-local mapping into which values can be written and from which values can be read.
The values stored here are retained beyond the execution of the current script.

75

76 17 Simulation object

• "Simulation.getMapGlobal()":
Returns a model wide mapping into which values can be written and from which values can be read.
The values stored here are retained beyond the execution of the current script.

• "Simulation.pauseAnimation()":
Switches the animation to single step mode. If the animation is already executed in single step mode
or if the model is executed as a simulation, this command has no effect.

• "Simulation.terminateSimulation(message)":
Beendet die Simulation. Wird als Nachricht null übergeben, so wird die Simulation normal beendet.
Im Falle einer Nachricht wird die Simulation mit der entsprechenden Fehlermeldung abgebrochen.

17.2 Accessing client-specific data

• "Simulation.clientTypeName()":
Returns the name of the type of the client who has triggered the processing of the script.
(If the event was triggered by a client.)

• "Simulation.clientBatchTypeNames()":
Returns the names of the types of the clients contained in the temporary batch which has triggered
the processing of the script. If the current client is not a temporary batch, an empty list is returned.
(If the event was triggered by a client.)

• "Simulation.int getSourceStationID()":
Returns the ID of the station where the current client was created or where it was assigned its current
type.
(If the event was triggered by a client.)

• "Simulation.isWarmUpClient()":
Gets true of false depending if the current client was generated during the warm-up phase and therefore
will not be recorded in the statistics.
(If the event was triggered by a client.)

• "Simulation.isClientInStatistics()":
Gets true of false depending if the current client is to be recorded in the statistics. This value is
independent of the warm-up phase. A client will only be recorded if he was generated after the warm-
up phase and this value is true.
(If the event was triggered by a client.)

• "Simulation.setClientInStatistics(inStatistics)":
Sets if a client is to be recorded in the statistics. This value is independent of the warm-up phase. A
client will only be recorded if he was generated after the warm-up phase and this value is not set to
false.
(If the event was triggered by a client.)

• "Simulation.clientNumber()":
Get the 1-based consecutive number of the current client. When using multiple simulation threads this
number is thread local.
(If the event was triggered by a client.)

• "Simulation.clientWaitingSeconds()":
Gets the current waiting time of the client who has triggered the processing of the script as a seconds
numerical value.
(If the event was triggered by a client.)

17.2 Accessing client-specific data 77

• "Simulation.clientWaitingTime()":
Gets the current waiting time of the client who has triggered the processing of the script as a formated
time value as a string.
(If the event was triggered by a client.)

• "Simulation.clientWaitingSecondsSet(seconds)":
Sets the current waiting time of the client who has triggered the processing of the script.
(If the event was triggered by a client.)

• "Simulation.clientTransferSeconds()":
Gets the current transfer time of the client who has triggered the processing of the script as a seconds
numerical value.
(If the event was triggered by a client.)

• "Simulation.clientTransferTime()":
Gets the current transfer time of the client who has triggered the processing of the script as a formated
time value as a string.
(If the event was triggered by a client.)

• "Simulation.clientTransferSecondsSet(seconds)":
Sets the current transder time of the client who has triggered the processing of the script.
(If the event was triggered by a client.)

• "Simulation.clientProcessSeconds()":
Gets the current processing time of the client who has triggered the processing of the script as a
seconds numerical value.
(If the event was triggered by a client.)

• "Simulation.clientProcessTime()":
Gets the current processing time of the client who has triggered the processing of the script as a
formated time value as a string.
(If the event was triggered by a client.)

• "Simulation.clientProcessSecondsSet(seconds)":
Sets the current processing time of the client who has triggered the processing of the script.
(If the event was triggered by a client.)

• "Simulation.clientResidenceSeconds()":
Gets the current residence time of the client who has triggered the processing of the script as a seconds
numerical value.
(If the event was triggered by a client.)

• "Simulation.clientResidenceTime()":
Gets the current residence time of the client who has triggered the processing of the script as a formated
time value as a string.
(If the event was triggered by a client.)

• "Simulation.clientResidenceSecondsSet(seconds)":
Sets the current residence time of the client who has triggered the processing of the script.
(If the event was triggered by a client.)

• "Simulation.getClientValue(index)":
Gets for the current client the numerical value which is stored by the index index.
(If the event was triggered by a client.)

• "Simulation.setClientValue(index,value)":
Sets for the current client the numerical value for the index index.
(If the event was triggered by a client.)

78 17 Simulation object

• "Simulation.getClientText("key")":
Gets for the current client the string which is stored by the key key.
(If the event was triggered by a client.)

• "Simulation.setClientText("key","value")":
Sets for the current client string value for the key key.
(If the event was triggered by a client.)

• "Simulation.getAllClientValues()": Return all numerical values stored for the current client.
• "Simulation.getAllTexts()": Return all text values stored for the current client.

17.3 Temporary batches

If the current client is a temporary batch, the properties of the inner clients it contains can be accessed
in read-only mode:

• "Simulation.batchSize()":
Returns the number of clients that are in the temporary batch. If the current client is not a temporary
batch, the function returns 0.

• "Simulation.getBatchTypeName(batchIndex)":
Returns the name of one of the clients in the current batch. The passed index is 0-based and must be
in the range from 0 to batchSize()-1.

• "Simulation.getBatchWaitingSeconds(batchIndex)":
Returns the previous waiting time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• mdSimulation.getBatchWaitingTime(batchIndex):
Returns the previous waiting time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.
tem mdSimulation.getBatchTransferSeconds(batchIndex):
Returns the previous transfer time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "Simulation.getBatchTransferTime(batchIndex)":
Returns the previous transfer time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "Simulation.getBatchProcessSeconds(batchIndex)":
Returns the previous processing time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "Simulation.getBatchProcessTime(batchIndex)":
Returns the previous processing time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "Simulation.getBatchResidenceSeconds(batchIndex)":
Returns the previous residence time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "Simulation.getBatchResidenceTime(batchIndex)":
Returns the previous residence time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

17.5 Accessing the current input value 79

• "Simulation.getBatchValue(batchIndex, index)":
Returns a stored numerical value for one of the clients in the current batch. The passed batch index
is 0-based and must be in the range from 0 to batchSize()-1.

• "Simulation.getBatchText(batchIndex, key)":
Returns a stored text value for one of the clients in the current batch. The passed batch index is
0-based and must be in the range from 0 to batchSize()-1.

17.4 Accessing parameters of the simulation model

• "Simulation.set("Name",Value)":
Sets the simulation variable which is specified as the first parameter to the value specified as the second
parameter. Value can be a number or a string. The case of a number the value will be assigned directly.
Strings will be interpreted like Simulation.calc does and the result will be assigned to the variable.
Name can either be the name of an already defined simulation variable or of a client data field in the
form ClientData(index) with index ≥ 0.

• "Simulation.setValue(id,Value)":
Sets the value at the "Analog value" or "Tank" element with the specified id.

• "Simulation.setRate(id,Value)":
Sets the change rate (per second) at the "Analog value" element with the specified id.

• "Simulation.setValveMaxFlow(id,ValveNr,Vale)":
Sets the maximum flow (per second) at the specified valve (1 based) of the "Tank" element with the
specified id. The maximum flow has to be a non-negative number.

• "Simulation.getWIP(idOrName)":
Gets the current number of clients at the station with the specified id (Integer) or the specified station
name (String).

• "Simulation.getNQ(idOrName)":
Gets the current number of clients in the queue at the station with the specified id (Integer) or the
specified station name (String).

• "Simulation.getNS(idOrName)":
Gets the current number of clients in service process at the station with the specified id (Integer) or
the specified station name (String).

• "Simulation.getWIP()":
Gets the current number of clients in the system.

• "Simulation.getNQ()":
Gets the current number of waiting clients in the system.

• "Simulation.getNS()":
Gets the current number of clients in service process in the system.

17.5 Accessing the current input value

• "Simulation.getInput()":
If the Javascript code is being executed from a Input (Script) element, this function returns the current
input value. Otherwise it will just return 0.

80 17 Simulation object

17.6 Number of operators in a resource

• "Simulation.getAllResourceCount()":
Returns the current number of operators in all resources together.

• "Simulation.getAllResourceCountAverage()":
Returns the average number of operators in all resources together.

• "Simulation.getResourceCount(id)":
Returns the current number of operators in the resource with the specified id.

• "Simulation.getResourceCountAverage(id)":
Returns the average number of operators in the resource with the specified id.

• "Simulation.setResourceCount(id,count)":
Sets the number of operators in the resource with the specified id. To be able to set the number of
operators in a resource at runtime, the initial number of operators in the resource has to be a fixed
number (not infinite many and not by a time table). Additionally no down times are allowed for this
resource. The function returns true if the number of operators has successfully been changed. If the
new number of operators is less than the previous number, the new number may is not instantly visible
in the simulation system because removed but working operators will finish their current tasks before
they are actually removed.

• "Simulation.getAllResourceDown()":
Returns the current number of operators in down time in all resources together.

• "Simulation.getResourceDown(id)":
Returns the current number of operators in down time in the resource with the specified id.

17.7 Last client type at process station

• "Simulation.getLastClientTypeName(id)":
Returns the name of the client type that has been served last at the process station.

17.8 Fire signal

• "Simulation.signal(name)":
Fires the signal with the given name.

17.9 Trigger script execution

• "Simulation.triggerScriptExecution(stationId,time)":
Triggers the execution of the script at a script or a script hold station at a given time.

17.10 Output message in logging

• "Simulation.log(message)":
Outputs the passed message to the logging system (if logging is enabled).

17.12 Clients in the queue of a process station 81

17.11 Release clients at delay stations

If a list of clients at a delay station is recorded, this list can be queried using the following function and
individual clients can be selectively released before their specified delay time has expired.

• "getDelayStationData(id)":
Returns an object which offers the methods described in Accessing client-specific data for accessing
the list of clients at the delay station id. If the id is invalid, null will be returned.

17.12 Clients in the queue of a process station

• "getProcessStationQueueData(id)": Returns an object which offers the methods described in Ac-
cessing client-specific data for accessing the list of clients waiting at the process station id. If the
id is invalid, null will be returned. Only the waiting clients can be accessed, not the clients which are
already in service process. Also clients cannot be released via the release method here.

Chapter 18

Clients object

The "Clients" object is only available within a hold by script condition element and allows to access
the waiting clients and to release them.

• "Clients.count()":
Returns the current number of waiting clients. For the other methods a single client can be accessed
via the index parameter (valued from 0 to count()-1).

• "Clients.clientTypeName(index)":
Returns the name of the type of the client.

• "Clients.clientBatchTypeNames(index)":
Returns the names of the types of the clients contained in the temporary batch which has triggered the
processing of the script. If the current client is not a temporary batch, an empty list is returned.

• "clientSourceStationID(index):"
Returns the ID of the station where the current client was created or where it was assigned its current
type.

• "Clients.clientWaitingSeconds(index)":
Gets the current waiting time of the client as a seconds numerical value.

• "Clients.clientWaitingTime(index)":
Gets the current waiting time of the client as a formated time value as a string.

• "Clients.clientWaitingSecondsSet(index,value)":
Sets the waiting time of the client as a seconds numerical value.

• "Clients.clientTransferSeconds(index)":
Gets the current transfer time of the client as a seconds numerical value.

• "Clients.clientTransferTime(index)":
Gets the current transfer time of the client as a formated time value as a string.

• "Clients.clientTransferSecondsSet(index,value)":
Sets the transfer time of the client as a seconds numerical value.

• "Clients.clientProcessSeconds(index)":
Gets the current processing time of the client as a seconds numerical value.

• "Clients.clientProcessTime(index)":
Gets the current processing time of the client as a formated time value as a string.

• "Clients.clientProcessSecondsSet(index,value)":
Sets the processing time of the client as a seconds numerical value.

83

84 18 Clients object

• "Clients.clientResidenceSeconds(index)":
Gets the current residence time of the client as a seconds numerical value.

• "Clients.clientResidenceTime(index)":
Gets the current residence time of the client as a formated time value as a string.

• "Clients.clientResidenceSecondsSet(index,value)":
Sets the residence time of the client as a seconds numerical value.

• "Clients.clientData(index,data)":
Returns the data element which index is specified via the second parameter of the selected client.

• "Clients.clientData(index,data,value)":
Set the numerical value specified by the third parameter for the data element which index is specified
via the second parameter of the selected client.

• "Clients.clientTextData(index,key)":
Returns the data element which key is specified via the second parameter of the selected client.

• "Clients.clientTextData(index,key,value)":
Set the text value specified by the third parameter for the key which is specified via the second
parameter of the selected client.

• "Clients.release(index)":
Causes the forwarding of the specified client.

Chapter 19

Output object

The "Output" object provides functions for output of filtered results:

• "Output.setFormat("Format")":
This command allows to setup the format that is used in "Output.print" and "Output.println"
for outputing numbers as strings. You can specify whether to use a floating point notation or percent
notation or interpreting the value as a time. As default floating point notation is used.

– "Fraction":
Using floating point notation for numbers (0.375 for example).

– "Percent":
Using percent notation for numbers (35.7% for example).

– "Number":
Interpreting numbers as normal number values (decimal or percent).

– "Time":
Interpreting numbers as time values.

• "Output.setSeparator("Format")":
This command allows to select the separator to be used when printing out arrays.

– "Semicolon":
Semicolons as separators.

– "Line":
Line break as separators.

– "Tabs":
Tabulators as separators.

• "Output.setDigits(digits)":
This command allows to define the number of digits to be displayed when printing a number in local
notation. A negative value means that all available digits are being printed. (If the system notation is
used, always all available digits are being printed.)

• "Output.print("Expression")":
Outputs the passed expression. Strings will be written directly. Numbers are formated according to
the format defined via Output.setFormat.

85

86 19 Output object

• "Output.println("Expression")":
Outputs the passed expression and adds a line break after the expression. Strings will be written
directly. Numbers are formated according to the format defined via Output.setFormat.

• "Output.newLine()":
Outputs a line break. This functions is equivalent to calling
"Output.println("")".

• "Output.tab()":
Outputs a tabulator.

• "Output.cancel()":
Sets the cancel status. (When output is canceled to further file output will be performed.)

• "Output.printlnDDE("Workbook","Table","Cell","Expression")":
This command is only available if DDE is available, i.e. under Windows. It outputs the passed expres-
sion via DDE in the specified table in Excel. Numbers are formated according to the format defined
via Output.setFormat.

Chapter 20

FileOutput object

The "FileOutput" object offers all function the "Output" has but is only available when running
a parameter series script. In opposite to the "Output" object the output of the "FileOutput" ob-
ject is not written to the default output but is appended to a file which has to be specified by
"FileOutput.setFile("Filename")" before.

87

Chapter 21

Model object

Th "Model" object is only available during parameter series script execution and offers functions for
accessing the model properties and for starting simulations.

• "Model.reset()":
Resets the model to the initial state.

• "Model.run()":
Simulates the current model. The results can be accessed by the "Statistics" object after the simu-
lation.

• "Model.setDistributionParameter("Path",Index,Value)":
Sets the distribution parameter Index (from 1 to 4) of the distribution referred to by Path.

• "Model.setMean("Path",Value)":
Sets the mean of the distribution referred to by Path to the specified value.

• "Model.setSD("Path",Value)":
Sets the standard deviation of the distribution referred to by Path to the specified value.

• "Model.setString("Path","Text)"":
Writes the string Text to the location referred to by Path.

• "Model.setValue("Path",Value)":
Writes the number Value to the location referred to by Path.

• "Model.xml("Path")":
Loads the xml field which is specified by the parameter and returns the data as String. This function
is the equivalent of "Statistics.xml("Path")" for models.

• "Model.getResourceCount("ResourceName")":
Gets the number of operations in the resource with name ResourceName. If the resource does not exist
or is not defined by a fixed number of operators the function will return -1.

• "Model.setResourceCount("ResourceName",Count)":
Sets the number of operations in the resource with name ResourceName.

• "Model.getGlobalVariableInitialValue("VariableName")":
Gets the expression by which the initial value of the global variable with name VariableName is
calculated. If the is no global variable with this name the function will return an empty string.

• "Model.setGlobalVariableInitialValue("VariableName","Expression")":
Sets the expression by which the initial value of the global variable with name VariableName is
calculated.

89

90 21 Model object

• "Model.getGlobalMapInitialValue("VariableName")":
Gets the initial value of the entry VariablenName of the global map. If there is no entry with this
name, null will be returned.

• "Model.setGlobalMapInitialValue("VariableName","Expression")":
Sets the initial value (of type Integer, Long, Double oder String) of the key VariablenName in the
global map.

• "Model.cancel()":
Sets the cancel status. (When processing is canceled to further simulations will be performed.)

21.1 Accessing station data

• "Model.getStationID("StationName")":
Gets the ID of a station based on its name. If there is no station with a matching name, the function
will return -1.

21.2 Retrieve the associated statistics file

• "Statistics.getStatisticsFile()":
Returns the full path and file name of the statistics file from which the data was loaded. If the statistic
data was not loaded from a file, an empty string is returned.

• "Statistics.getStatisticsFileName()":
Returns the file name of the statistics file from which the data was loaded. If the statistic data was
not loaded from a file, an empty string is returned.

Chapter 22

XML selection commands

By the parameters of the functions of the "Statistics" object the content of the value or of an attribute
of an XML element can be read. The selection of an XML element is done multistaged step by step
divided by "->" characters. Between the "->" characters the names of the individual XML nodes are
noted. In addition in square brackets names and values of attributes can be specified to filter by whom.
Examples:

• "Statistics.xml("Model->ModellName")":
Shows the content of the element ModelName, which is a child element of Model.

• "Statistics.xml("StatisticsInterArrivalTimesClients->
Station[Type=\"Source id=1\"]->[Mean]")":
Selects the Station sub element of the StatisticsInterArrivalTimesClients element, for which
the Type attribute is set to Source id=1. And returns the value of the Mean attribute.

91

Part III

Java commands reference
Scripts can be used at different points in the simulator. The script language is Javascript or Java.
In this section the additional Java commands which are available when using Java to access the simulation
or statistics data and to output filtered data are presented.
The Java code has to be embedded in a

void function(SimulationInterface sim) {

}

method. In addition to the standard language commands you can access the simulation or statistics data
depending on the context in which the script is executed via the SimulationInterface interface which
is given as a parameter. The SimulationInterface has some methods which allow to get sub-interfaces
which offer these data:

Chapter 23

StatisticsInterface accessible via sim.getStatistics()

The sim.getStatistics() methods returns a StatisticsInterface interface which offers read access to
the xml elements which are the base of the statistics data. The StatisticsInterface interface is only
available after the simulation while filtering the results while and when running a parameter series scripts.
The following methods are in this object available:

23.1 Definition of the output format

• "void setFormat(final String format)":
This command allows to setup the format that is used in "Statistics.xml" for outputing numbers
as strings. You can specify whether to use a floating point notation or percent notation or interpreting
the value as a time. As default floating point notation is used.

– "System": Using floating point notation for numbers and percent values.
–
– "Fraction": Using floating point notation for numbers (0.375 for example).
– "Percent": Using percent notation for numbers (35.7% for example).
– "Time": Interpreting numbers as times (00:03:25,87 for example).
– "Number": Interpreting time values as normal numbers (format defined by Percent or Fraction).

• "void setSeparator(final String separator)":
This command allows to select the separator to be used when printing out distributions of measured
values.

– "Semicolon": Semicolons as separators
– "Line": Line break as separators
– "Tabs": Tabulators as separators

23.2 Accessing statistics xml data

• "String xml(final String path)":
Loads the xml field which is specified by the parameter and returns the data in the format defined by
sim.getStatistics().setFormat and sim.getStatistics().setSeparator as a string.

95

96 23 StatisticsInterface accessible via sim.getStatistics()

Example: String name=sim.getStatistics().xml("Model->ModelName")

• "Object xmlNumber(final String path)":
Loads the xml field which is specified by the parameter and returns the value as a Double number. If
the field cannot be interpreted as a number, a string containing an error message will be returned.

• "Object xmlArray(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
values as an array of numbers (double[]). If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
sim.getStatistics().xmlArray("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

• "Object xmlSum(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
sum of all values as a Double number. If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
sim.getStatistics().xmlSum("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

• "Object xmlMean(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns
the mean of values as a Double number. If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
sim.getStatistics().xmlMean("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

• "Object xmlSD(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
standard deviation of values as a Double number. If the field cannot be interpreted as a distribution,
a string containing an error message will be returned.
Example: sim.getStatistics().xmlSD("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

• "Object xmlCV(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
coefficient of variation of values as a Double number. If the field cannot be interpreted as a distribution,
a string containing an error message will be returned.
Example:
sim.getStatistics().xmlCV("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

• "Object xmlMedian(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns
the median of values as a Double number. If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
sim.getStatistics().xmlMedian("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

23.5 Retrieve the associated statistics file 97

• "Object xmlMode(final String path)":
Loads the xml field which is specified by the parameter, interprets it as a distribution and returns the
mode value of values as a Double number. If the field cannot be interpreted as a distribution, a string
containing an error message will be returned.
Example:
sim.getStatistics().xmlMode("StatisticsProcessTimesClients->
ClientType[Type=\"ClientsA\"]->[Distribution]")

• "boolean translate(final String language)":
Translates the statistics data to English ("en") or German ("de") so the preferred xml tag names can
be used independent of the language setting under which the statistics file was generated.

23.3 Saving the statistics data to files

• "boolean save(final String fileName)":
Saves the entry statistics data under the next available file name in the given folder.
This function is only available in the Run script panel.

• "boolean saveNext(final String folderName)":
Saves the entry statistics data under the next available file name in the given folder.
This function is only available in the Run script panel.

• "String filter(final String fileName)":
Applies the selected script on the statistics data and returns the results.
This function is only available in the Run script panel.

• "void cancel()":
Sets the cancel status. (When output is canceled to further file output will be performed.)

23.4 Accessing station data

• "int getStationID(final String name)":
Gets the ID of a station based on its name. If there is no station with a matching name, the function
will return -1.

23.5 Retrieve the associated statistics file

• "String getStatisticsFile()":
Returns the full path and file name of the statistics file from which the data was loaded. If the statistic
data was not loaded from a file, an empty string is returned.

• "String getStatisticsFileName()":
Returns the file name of the statistics file from which the data was loaded. If the statistic data was
not loaded from a file, an empty string is returned.

Chapter 24

RuntimeInterface accessible via sim.getRuntime()

The RuntimeInterface interface allows to access some general program functions.
The RuntimeInterface is always available. The following methods are available in this interface:

• "Object calc(final String expression)":
Calculates the expression passed as a string by means of the term evaluation function, which is also
used in various other places in the program (see part I), and returns the result as a Double number.
If the expression can not be calculated, an error message is returned as a string. The term evaluation
function allows access to all known probability distributions, the Erlang C calculator, etc.

• "long getTime()":
Returns the current system time as a milliseconds value. This functions can be used to measure the
runtime of a script.

• "double getInput(final String url, final double errorValue)":
Loads a numerical value via the specified address and returns it. If no value could be loaded, the error
value specified in the second parameter is returned.

• "boolean execute(final String commandLine)":
Executes an external command and returns immediately. Returns true, if the program could be started.
Executing external programs by scripts is disabled by default. If can be activated in the program
settings dialog.

• "String executeAndReturnOutput(final String commandLine)":
Executes an external command and returns the output. Executing external programs by scripts is
disabled by default. If can be activated in the program settings dialog.

• "int executeAndWait(final String commandLine)":
Executes an external command, waits for completion and returns the return code of the program. In
case of an error -1 will be returned. Executing external programs by scripts is disabled by default. If
can be activated in the program settings dialog.

99

Chapter 25

SystemInterface accessible via sim.getSystem()

The SystemInterface interface allows to access the model data while simulation is running. It is not
available for filtering the results after simulation has terminated. The following methods are available in
this interface:

25.1 Base functions

• "double getTime()":
Gets the current time in the simulation as a seconds numerical value.

• "Object calc(final String expression)":
Calculates the expression passed as a string by means of the term evaluation function, which is also
used in various other places in the program (see part I), and returns the result as a Double number.
If the expression can not be calculated, an error message is returned as a string. The term evaluation
function allows access to all known probability distributions, the Erlang C calculator, etc.

• "boolean isWarmUp()":
Gets true of false depending if the simulation is in the warm-up phase.

• "Map<String,Object> getMapLocal()":
Returns a station-local mapping into which values can be written and from which values can be read.
The values stored here are retained beyond the execution of the current script.

• "Map<String,Object> getMapGlobal()":
Returns a model wide mapping into which values can be written and from which values can be read.
The values stored here are retained beyond the execution of the current script.

• "void pauseAnimation()":
Switches the animation to single step mode. If the animation is already executed in single step mode
or if the model is executed as a simulation, this command has no effect.

• "void terminateSimulation(final String message)":
Terminates the simulation. If null is passed as message, the simulation is terminated normally. In
case of a message, the simulation will be terminated with the corresponding error message.

25.2 Accessing parameters of the simulation model

• "void set(final String varName, final Object varValue)":
Sets the simulation variable which is specified as the first parameter to the value specified as the second

101

102 25 SystemInterface accessible via sim.getSystem()

parameter. varValue can be a number or a string. The case of a number the value will be assigned
directly. Strings will be interpreted like calc(final String expression) does and the result will be
assigned to the variable. varName can either be the name of an already defined simulation variable or
of a client data field in the form ClientData(index) with index ≥ 0.

• "void setAnalogValue(final Object elementID, final Object value)":
Sets the value at the "Analog value" or "Tank" element with the specified id.

• "void setAnalogRate(final Object elementID, final Object value)":
Sets the change rate (per second) at the "Analog value" element with the specified id.

• "void setAnalogValveMaxFlow(final Object elementID, final Object valveNr,
final Object value)":
Sets the maximum flow (per second) at the specified valve (1 based) of the "Tank" element with the
specified id. The maximum flow has to be a non-negative number.

• "int getWIP(final int id)":
Gets the current number of clients at the station with the specified id.

• "int getNQ(final int id)":
Gets the current number of clients in the queue at the station with the specified id.

• "int getNS(final int id)":
Gets the current number of clients in service process at the station with the specified id.

• "int getWIP(final String stationName)":
Gets the current number of clients at the station with the specified name.

• "int getNQ(final String stationName)":
Gets the current number of clients in the queue at the station with the specified name.

• "int getNS(final String stationName)":
Gets the current number of clients in service process at the station with the specified name.

• "int getWIP()":
Gets the current number of clients in the system.

• "int getNQ()":
Gets the current number of waiting clients in the system.

• "int getNS()":
Gets the current number of clients in service process in the system.

25.3 Number of operators in a resource

• "int getAllResourceCount()":
Returns the current number of operators in all resources together.

• "int getAllResourceCountAverage()":
Returns the average number of operators in all resources together.

• "int getResourceCount(final int resourceId)":
Returns the current number of operators in the resource with the specified id.

• "int getResourceCountAverage(final int resourceId)":
Returns the average number of operators in the resource with the specified id.

• "boolean setResourceCount(final int resourceId, final int count)":
Sets the number of operators in the resource with the specified id. To be able to set the number of
operators in a resource at runtime, the initial number of operators in the resource has to be a fixed

25.9 Release clients at delay stations 103

number (not infinite many and not by a time table). Additionally no down times are allowed for this
resource. The function returns true if the number of operators has successfully been changed. If the
new number of operators is less than the previous number, the new number may is not instantly visible
in the simulation system because removed but working operators will finish their current tasks before
they are actually removed.

• "int getAllResourceDown()":
Returns the current number of operators in down time in all resources together.

• "int getResourceDown(final int resourceId)":
Returns the current number of operators in down time in the resource with the specified id.

25.4 Last client type at process station

• "String getLastClientTypeName(final int id)":
Returns the name of the client type that has been served last at the process station.

25.5 Fire signal

• "signal(final String signalName)":
Fires the signal with the given name.

25.6 Trigger script execution

• "boolean triggerScriptExecution(final int stationId, final double time)":
Triggers the execution of the script at a script or a script hold station at a given time.

25.7 Run external code

• "Object runPlugin(final String className, final String functionName,
final Object data)":
Runs the specified method in the specified class and passes the optional parameter data to the method.
The return value of the method will be returned by runPlugin. If calling the external method fails,
runPlugin will return null.

25.8 Output message in logging

• "void log(final Object obj)":
Outputs the passed message to the logging system (if logging is enabled).

25.9 Release clients at delay stations

If a list of clients at a delay station is recorded, this list can be queried using the following function and
individual clients can be selectively released before their specified delay time has expired.

104 25 SystemInterface accessible via sim.getSystem()

• "ClientsInterface getDelayStationData(final int id)":
Returns an object implementing ClientsInterface which represents the list of clients at the delay
station id. If the id is invalid, null will be returned.

25.10 Clients in the queue of a process station

• "ClientsInterface getProcessStationQueueData(final int id)": Returns an object implement-
ing ClientsInterface which represents the list of clients waiting at the process station id. If the id
is invalid, null will be returned. Only the waiting clients can be accessed, not the clients which are
already in service process. Also clients cannot be released via ClientsInterface.release here.

Chapter 26

ClientInterface accessible via sim.getClient()

The ClientInterface interface allows to access the data of the current client while the simulation is
running. It is only available if the execution was triggered by a client. The following methods are available
in this interface:

• "Object calc(final String expression)":
Calculates the expression passed as a string by means of the term evaluation function, which is also
used in various other places in the program (see part I), and returns the result as a Double number.
If the expression can not be calculated, an error message is returned as a string. The term evaluation
function allows access to all known probability distributions, the Erlang C calculator, etc.

• "String getTypeName()":
Returns the name of the type of the client who has triggered the processing of the script.

• "String[] getBatchTypeNames()":
Returns the names of the types of the clients contained in the temporary batch which has triggered the
processing of the script. If the current client is not a temporary batch, an empty list is returned.

• "int getSourceStationID()":
Returns the ID of the station where the current client was created or where it was assigned its current
type.

• "boolean isWarmUp()":
Gets true of false depending if the current client was generated during the warm-up phase and
therefore will not be recorded in the statistics.

• "boolean isInStatistics()":
Gets true of false depending if the current client is to be recorded in the statistics. This value is
independent of the warm-up phase. A client will only be recorded if he was generated after the warm-
up phase and this value is true.

• "void setInStatistics(final boolean inStatistics)":
Sets if a client is to be recorded in the statistics. This value is independent of the warm-up phase. A
client will only be recorded if he was generated after the warm-up phase and this value is not set to
false.

• "long getNumber()":
Get the 1 based consecutive number of the current client. When using multiple simulation threads this
number is thread local.

• "double getWaitingSeconds()":
Gets the current waiting time of the client who has triggered the processing of the script as a seconds
numerical value.

105

106 26 ClientInterface accessible via sim.getClient()

• "String getWaitingTime()":
Gets the current waiting time of the client who has triggered the processing of the script as a formated
time value as a string.

• "void setWaitingSeconds(final double seconds)":
Sets the current waiting time of the client who has triggered the processing of the script.

• "double getTransferSeconds()":
Gets the current transfer time of the client who has triggered the processing of the script as a seconds
numerical value.

• "String getTransferTime()":
Gets the current transfer time of the client who has triggered the processing of the script as a formated
time value as a string.

• "void setTransferSeconds(final double seconds)":
Sets the current transfer time of the client who has triggered the processing of the script.

• "double getProcessSeconds()":
Gets the current processing time of the client who has triggered the processing of the script as a
seconds numerical value.

• "String getProcessTime()":
Gets the current processing time of the client who has triggered the processing of the script as a
formated time value as a string.

• "void setProcessSeconds(final double seconds)":
Sets the current processing time of the client who has triggered the processing of the script.

• "double getResidenceSeconds()":
Gets the current residence time of the client who has triggered the processing of the script as a seconds
numerical value.

• "String getResidenceTime()":
Gets the current residence time of the client who has triggered the processing of the script as a formated
time value as a string.

• "void setResidenceSeconds(final double seconds)":
Sets the current residence time of the client who has triggered the processing of the script.

• "double getValue(final int index)":
Gets for the current client the numerical value which is stored by the index index.

• "void setValue(final int index, final int value)",
"void setValue(final int index, final double value)",
"void setValue(final int index, final String value)":
Sets for the current client the value for the index index. If value is a string, the string is interpreted
by calc(final String expression) before assigning the result.

• "String getText(final String key)":
Gets for the current client the string which is stored by the key key.

• "void setText(final String key, final String value)":
Sets for the current client string value for the key key.

• "double[] getAllValues()": Return all numerical values stored for the current client.
• "Map<String,String> getAllTexts()": Return all text values stored for the current client.

26.1 Temporary batches 107

26.1 Temporary batches

If the current client is a temporary batch, the properties of the inner clients it contains can be accessed
in read-only mode:

• "int batchSize()":
Returns the number of clients that are in the temporary batch. If the current client is not a temporary
batch, the function returns 0.

• "String getBatchTypeName(final int batchIndex)":
Returns the name of one of the clients in the current batch. The passed index is 0-based and must be
in the range from 0 to batchSize()-1.

• "double getBatchWaitingSeconds(final int batchIndex)":
Returns the previous waiting time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "String getBatchWaitingTime(final int batchIndex)":
Returns the previous waiting time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "double getBatchTransferSeconds(final int batchIndex)":
Returns the previous transfer time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "String getBatchTransferTime(final int batchIndex)":
Returns the previous transfer time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "double getBatchProcessSeconds(final int batchIndex)":
Returns the previous processing time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "String getBatchProcessTime(final int batchIndex)":
Returns the previous processing time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "double getBatchResidenceSeconds(final int batchIndex)":
Returns the previous residence time of one of the clients in the current batch in seconds as a numerical
value. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "String getBatchResidenceTime(final int batchIndex)":
Returns the previous residence time of one of the clients in the current batch in formatted form as a
string. The passed index is 0-based and must be in the range from 0 to batchSize()-1.

• "double getBatchValue(final int batchIndex, final int index)":
Returns a stored numerical value for one of the clients in the current batch. The passed batch index
is 0-based and must be in the range from 0 to batchSize()-1.

• "String getBatchText(final int batchIndex, final String key)":
Returns a stored text value for one of the clients in the current batch. The passed batch index is
0-based and must be in the range from 0 to batchSize()-1.

Chapter 27

InputValueInterface accessible via sim.getInputValue()

The InputValueInterface interface allows to access the next input value if the processing was triggered
by a Input (Script) element. The following methods are available in this interface:

• "double get()":
This function returns the current input value.

109

Chapter 28

ClientsInterface accessible via sim.getClients()

The ClientsInterface object is only available within a hold by script condition element and allows to
access the waiting clients and to release them.

• "int count()":
Returns the current number of waiting clients. For the other methods a single client can be accessed
via the index parameter (valued from 0 to count()-1).

• "String clientTypeName(final int index)":
Returns the name of the type of the client.

• "String[] clientBatchTypeNames(final int index)":
Returns the names of the types of the clients contained in the temporary batch which has triggered
the processing of the script. If the current client is not a temporary batch, an empty list is returned.

• "int clientSourceStationID(final int index)":
Returns the ID of the station where the current client was created or where it was assigned its current
type.

• "double clientWaitingSeconds(final int index)":
Gets the current waiting time of the client as a seconds numerical value.

• "String clientWaitingTime(final int index)":
Gets the current waiting time of the client as a formated time value as a string.

• "void clientWaitingSecondsSet(final int index, final double time)":
Sets the waiting time of the client as a seconds numerical value.

• "double clientTransferSeconds(final int index)":
Gets the current transfer time of the client as a seconds numerical value.

• "String clientTransferTime(final int index)":
Gets the current transfer time of the client as a formated time value as a string.

• "void clientTransferSecondsSet(final int index, final double time)":
Sets the transfer time of the client as a seconds numerical value.

• "double clientProcessSeconds(final int index)":
Gets the current processing time of the client as a seconds numerical value.

• "String clientProcessTime(final int index)":
Gets the current processing time of the client as a formated time value as a string.

• "void clientProcessSecondsSet(final int index, final double time)":
Sets the processing time of the client as a seconds numerical value.

111

112 28 ClientsInterface accessible via sim.getClients()

• "double clientResidenceSeconds(final int index)":
Gets the current residence time of the client as a seconds numerical value.

• "String clientResidenceTime(final int index)":
Gets the current residence time of the client as a formated time value as a string.

• "void clientResidenceSecondsSet(final int index, final double time)":
Sets the residence time of the client as a seconds numerical value.

• "void clientData(final int index, final int data, final double value)":
Set the numerical value specified by the third parameter for the data element which index is specified
via the second parameter of the selected client.

• "double clientData(final int index, final int data)":
Returns the data element which index is specified via the second parameter of the selected client.

• "String clientTextData(final int index, final String key)":
Returns the data element which key is specified via the second parameter of the selected client.

• "String clientTextData(final int index, final String key, final String value)":
Set the text value specified by the third parameter for the key which is specified via the second
parameter of the selected client.

• "void release(final int index)":
Causes the forwarding of the specified client.

Chapter 29

OutputInterface accessible via sim.getOutput()

The OutputInterface interface provides functions for output of filtered results:

• "void setFormat(final String format)":
This command allows to setup the format that is used in print and println for outputing numbers
as strings. You can specify whether to use a floating point notation or percent notation or interpreting
the value as a time. As default floating point notation is used.

– "Fraction":
Using floating point notation for numbers (0.375 for example).

– "Percent":
Using percent notation for numbers (35.7% for example).

– "Number":
Interpreting numbers as normal number values (decimal or percent).

– "Time":
Interpreting numbers as time values.

• "void setSeparator(final String separator)":
This command allows to select the separator to be used when printing out arrays.

– "Semicolon":
Semicolons as separators.

– "Line":
Line break as separators.

– "Tabs":
Tabulators as separators.

• "void setDigits(final int digits)":
This command allows to define the number of digits to be displayed when printing a number in local
notation. A negative value means that all available digits are being printed. (If the system notation is
used, always all available digits are being printed.)

• "void print(final Object obj)":
Outputs the passed expression. Strings will be written directly. Numbers are formated according to
the format defined via setFormat.

113

114 29 OutputInterface accessible via sim.getOutput()

• "void println(final Object obj)":
Outputs the passed expression and adds a line break after the expression. Strings will be written
directly. Numbers are formated according to the format defined via setFormat.

• "void newLine()":
Outputs a line break. This functions is equivalent to calling println("").

• "void tab()":
Outputs a tabulator.

• "void cancel()":
Sets the cancel status. (When output is canceled to further file output will be performed.)

• "printlnDDE(final String workbook, final String table, final String cell,
final Object obj)":
This command is only available if DDE is available, i.e. under Windows. It outputs the passed expres-
sion via DDE in the specified table in Excel. Numbers are formated according to the format defined
via setFormat.

Chapter 30

FileOutputInterface accessible via sim.getFileOutput()

The FileOutputInterface interface offers all function the OutputInterface interface has but is only
available when running a parameter series script. In opposite to the OutputInterface interface the
output of the FileOutputInterface interface is not written to the default output but is appended to a
file which has to be specified by sim.getFileOutput().setFile("Filename") before.

115

Chapter 31

ModelInterface accessible via sim.getModel()

The ModelInterface interface is only available during parameter series script execution and offers func-
tions for accessing the model properties and for starting simulations.

• "void reset()":
Resets the model to the initial state.

• "void run()":
Simulates the current model. The results can be accessed by the StatisticsInterface interface after
the simulation.

• "boolean setDistributionParameter(final String xmlName, final int number,
final double value)":
Sets the distribution parameter number (from 1 to 4) of the distribution referred to by xmlName.

• "boolean setMean(final String xmlName, final double value)":
Sets the mean of the distribution referred to by xmlName to the specified value.

• "boolean setSD(final String xmlName, final double value)":
Sets the standard deviation of the distribution referred to by xmlName to the specified value.

• "boolean setString(final String xmlName, final String value)":
Writes the string value to the location referred to by xmlName.

• "boolean setValue(final String xmlName, final double value)":
Writes the number value to the location referred to by xmlName.

• "String xml(final String xmlName)":
Loads the xml field which is specified by the parameter and returns the data as String. This function
is the equivalent of sim.getStatistics().xml(xmlName) for models.

• "getResourceCount(final String resourceName)":
Gets the number of operations in the resource with name resourceName. If the resource does not exist
or is not defined by a fixed number of operators the function will return -1.

• "boolean setResourceCount(final String resourceName, final int count)":
Sets the number of operations in the resource with name resourceName.

• "String getGlobalVariableInitialValue(final String variableName)":
Gets the expression by which the initial value of the global variable with name variableName is
calculated. If the is no global variable with this name the function will return an empty string.

• "boolean setGlobalVariableInitialValue(final String variableName,
final String expression)":

117

118 31 ModelInterface accessible via sim.getModel()

Sets the expression by which the initial value of the global variable with name variableName is
calculated.

• "String getGlobalMapInitialValue(final String variableName)":
Gets the initial value of the entry VariablenName of the global map. If there is no entry with this
name, null will be returned.

• "boolean setGlobalMapInitialValue(final String variableName,
final String expression)":
Sets the initial value (of type Integer, Long, Double oder String) of the key VariablenName in the
global map.

• "void cancel()":
Sets the cancel status. (When processing is canceled to further simulations will be performed.)

31.1 Accessing station data

• "int getStationID(final String name)":
Gets the ID of a station based on its name. If there is no station with a matching name, the function
will return -1.

Chapter 32

XML selection commands

By the parameters of the functions of the "StatisticsInterface" interface the content of the value or
of an attribute of an XML element can be read. The selection of an XML element is done multistaged
step by step divided by "->" characters. Between the "->" characters the names of the individual XML
nodes are noted. In addition in square brackets names and values of attributes can be specified to filter
by whom.
Examples:

• "sim.getStatistics().xml("Model->ModellName")":
Shows the content of the element ModelName, which is a child element of Model.

• "sim.getStatistics().xml("StatisticsInterArrivalTimesClients->
Station[Type=\"Source id=1\"]->[Mean]")":
Selects the Station sub element of the StatisticsInterArrivalTimesClients element, for which
the Type attribute is set to Source id=1. And returns the value of the Mean attribute.

119

	Table of contents
	1 Calculation commands and scripting in Warteschlangensimulator
	1.1 Create expressions

	I Calculation commands reference
	2 Constants
	3 Variables
	4 Basic arithmetic operations
	5 Trailing instructions
	6 General functions
	6.1 Random numbers

	7 Trigonometric functions
	7.1 Elementary trigonometric functions
	7.2 Hyperbolic trigonometric functions
	7.3 Inverse of the elementary trigonometric functions
	7.4 Inverse of the hyperbolic trigonometric functions

	8 Functions with multiple parameters
	9 Logic functions
	10 Probability distributions
	10.1 Geometric distribution
	10.2 Hypergeometric distribution Hg(N,K,n)
	10.3 Binomial distribution B(n,p)
	10.4 Binomial distribution with mean a and standard deviation b
	10.5 Poisson distribution P(l)
	10.6 Zeta distribution Z(s)
	10.7 Negative hypergeometric distribution NHg(N,K,n)
	10.8 Negative binomial distribution NB(r,p)
	10.9 Negative binomial distribution with mean a and standard deviation b
	10.10 Discrete uniform distribution in the interval [a;b] (integer numbers)
	10.11 Logarithmic distribution
	10.12 Borel distribution
	10.13 Exponential distribution with mean a
	10.14 Uniform distribution in the interval [a;b]
	10.15 Normal distribution with mean a and standard deviation b
	10.16 Log-normal distribution with mean a and standard deviation b
	10.17 Gamma distribution with parameters a and b
	10.18 Gamma distribution with mean a and standard deviation b
	10.19 Erlang distribution with parameters n and l
	10.20 Beta distribution in the interval [a;b] and with parameters c and d
	10.21 Beta distribution in the interval [a;b] and with mean c and standard deviation d
	10.22 Weibull distribution with parameters Scale=a and Form=b
	10.23 Cauchy distribution with mean a and Scale=b
	10.24 Chi2 distribution with n degrees of freedom
	10.25 Chi distribution with n degrees of freedom
	10.26 F distribution with a degrees of freedom for the numerator and b degrees of freedom for the denominator
	10.27 Johnson SU distribution with parameters a, b, c and d
	10.28 Triangular distribution over [a;c] with most likely value b
	10.29 Trapezoid distribution over [a;d] with uniform distribution in [b;c]
	10.30 Pert distribution over [a;c] with most likely value b
	10.31 Laplace distribution with mean mu and scale factor b
	10.32 Pareto distribution with scale parameter xmin and shape parameter a
	10.33 Logistic distribution with mean mu and scale parameter s
	10.34 Inverse gaussian distribution with l and mean mu
	10.35 Rayleigh distribution with mean mu
	10.36 Log-Logistic distribution with alpha and mean beta
	10.37 Power distribution on [a;b] with exponent c
	10.38 Gumbel distribution with location a and scale b
	10.39 Gumbel distribution with expected value a and standard deviation b
	10.40 Fatigue life distribution with location parameter mu, scale parameter beta and form parameter gamma
	10.41 Frechet distribution with location parameter delta, scale parameter beta and form parameter alpha
	10.42 Hyperbolic secant distribution with mean a and standard deviation b
	10.43 Left sawtooth distribution over [a;b]
	10.44 Left sawtooth distribution with mean a and standard deviation b
	10.45 Right sawtooth distribution over [a;b]
	10.46 Right sawtooth distribution with mean a and standard deviation b
	10.47 Levy distribution with location parameter mu and form parameter c
	10.48 Maxwell Boltzmann distribution with parameter a
	10.49 Student t-distribution with parameters mu and nu
	10.50 Half normal distribution with start s and unshifted mean mu
	10.51 U-quadratic distribution in the interval [a;b]
	10.52 Reciprocal distribution in the interval [a;b]
	10.53 Kumaraswamy distribution with parameters a und b over the interval [c;d]
	10.54 Irwin-Hall distribution with parameter n
	10.55 Irwin-Hall distribution with mean a
	10.56 Sine distribution in the interval [a;b]
	10.57 Arcsine distribution in the interval [a;b]
	10.58 Wigner half-circle distribution with mean m and radius R
	10.59 Log-Cauchy distribution with parameters mu and sigma
	10.60 Distribution based on empirical values

	11 Erlang C calculator
	11.1 Random selection of one of several values
	11.2 Random numbers according to a user-defined distribution

	12 Allen-Cunneen approximation formula
	13 Accessing model properties
	13.1 General simulation data
	13.2 Clients in the system
	13.2.1 Number of clients in the system
	13.2.2 Number of waiting clients in the system
	13.2.3 Number of clients in service process in the system

	13.3 Clients at the stations
	13.3.1 Number of clients at a station
	13.3.2 Number of clients at the queue at a station
	13.3.3 Number of clients in service process at a station
	13.3.4 Number of arrivals and departures at a station

	13.4 Clients in system by client type
	13.4.1 Number of clients in the system by client type
	13.4.2 Number of waiting clients in the system by client type
	13.4.3 Number of clients in service process by client type

	13.5 Counter and throughput
	13.6 Waiting times
	13.6.1 Waiting times at a station
	13.6.2 Waiting times over all client types
	13.6.3 Waiting times for a specific client type

	13.7 Transfer times
	13.7.1 Transfer times at a station
	13.7.2 Transfer times over all client types
	13.7.3 Transfer times for a specific client type

	13.8 Process times
	13.8.1 Process times at a station
	13.8.2 Process times over all client types
	13.8.3 Process times for a specific client type

	13.9 Residence times
	13.9.1 Residence times at a station
	13.9.2 Residence times over all client types
	13.9.3 Residence times for a specific client type
	13.9.4 Setup times at a station

	13.10 Flow factor
	13.10.1 Flow factor at a station
	13.10.2 Flow factor over all client types
	13.10.3 Flow factor for a specific client type

	13.11 Utilization of the resources
	13.11.1 Utilization of a resource
	13.11.2 Utilization of all resource together

	13.12 Utilization of the transporters
	13.12.1 Utilization of a transporter group
	13.12.2 Utilization of all transporters together

	13.13 Accessing the Statistics stations records
	13.14 Accessing analog values
	13.15 Accessing the client object specific data fields
	13.16 Accessing the costs

	14 Comparison
	14.1 Comparison function

	II Javascript commands reference
	15 Statistics object
	15.1 Definition of the output format
	15.2 Accessing statistics xml data
	15.3 Saving the statistics data to files
	15.4 Accessing station data

	16 System object
	17 Simulation object
	17.1 Base functions
	17.2 Accessing client-specific data
	17.3 Temporary batches
	17.4 Accessing parameters of the simulation model
	17.5 Accessing the current input value
	17.6 Number of operators in a resource
	17.7 Last client type at process station
	17.8 Fire signal
	17.9 Trigger script execution
	17.10 Output message in logging
	17.11 Release clients at delay stations
	17.12 Clients in the queue of a process station

	18 Clients object
	19 Output object
	20 FileOutput object
	21 Model object
	21.1 Accessing station data
	21.2 Retrieve the associated statistics file

	22 XML selection commands

	III Java commands reference
	23 StatisticsInterface accessible via sim.getStatistics()
	23.1 Definition of the output format
	23.2 Accessing statistics xml data
	23.3 Saving the statistics data to files
	23.4 Accessing station data
	23.5 Retrieve the associated statistics file

	24 RuntimeInterface accessible via sim.getRuntime()
	25 SystemInterface accessible via sim.getSystem()
	25.1 Base functions
	25.2 Accessing parameters of the simulation model
	25.3 Number of operators in a resource
	25.4 Last client type at process station
	25.5 Fire signal
	25.6 Trigger script execution
	25.7 Run external code
	25.8 Output message in logging
	25.9 Release clients at delay stations
	25.10 Clients in the queue of a process station

	26 ClientInterface accessible via sim.getClient()
	26.1 Temporary batches

	27 InputValueInterface accessible via sim.getInputValue()
	28 ClientsInterface accessible via sim.getClients()
	29 OutputInterface accessible via sim.getOutput()
	30 FileOutputInterface accessible via sim.getFileOutput()
	31 ModelInterface accessible via sim.getModel()
	31.1 Accessing station data

	32 XML selection commands

